We have developed a new, simple, and accurate method for the determination of total sulfur at microgram per gram levels in milligram-sized silicate materials with isotope dilution high-resolution inductively coupled plasma mass spectrometry equipped with a flow injection system. In this method, sulfur can be quantitatively oxidized by bromine into sulfate with achievement of isotope equilibrium between the sample and spike. Detection limits for 32S+ and 34S+ in the ideal solution and silicate samples were 1 and 6 ng mL(-1) and 0.07 and 0.3 microg g(-1), respectively. The total blank was 46 ng, so that a 40-mg silicate sample containing 10 mirog g(-1) sulfur can be measured with a blank correction of < 10%. This total blank can be lowered to 8 ng if a low-blank air system is used for evaporations. To evaluate the applicability of this method, we analyzed not only silicate reference materials with sulfur content of 5.25-489 microg g(-1) and sample sizes of 13-40 mg but also the Allende meteorite with a sulfur content of 2%. The reproducibility for various rock types was < 9%, even though blank corrections in some samples of low sulfur content were up to 24%. This method is suitable for analyzing geological samples as well environmental samples such as soils, sediments, and water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac001550i | DOI Listing |
Polymers (Basel)
January 2025
Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.
View Article and Find Full Text PDFPLoS One
January 2025
Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America.
Deployment-related constrictive bronchiolitis (DRCB) has emerged as a health concern in military personnel returning from Southwest Asia. Exposure to smoke from a fire at the Al-Mishraq sulfur enrichment facility and/or burn pits was reported by a subset of Veterans diagnosed with this disorder. DRCB is characterized by thickening and fibrosis of small airways (SA) in the lung, but whether these are related to toxin inhalation remains uncertain.
View Article and Find Full Text PDFToxics
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mining and Explosives Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).
View Article and Find Full Text PDFSci Rep
January 2025
Research Center for Applied Chemistry, Blvd Enrique Reyna 140, San José de los Cerritos, Saltillo, 25294, Mexico.
As the rubber industry seeks sustainable alternatives to mitigate its environmental impact, this study introduces a biobased approach using polyfarnesene rubber reinforced with plasma-modified cellulose nanocrystals (MCNC) and nanofibers (MCNF). The nanocellulose was modified by plasma-induced polymerization using trans-β-farnesene and was characterized by FTIR, XPS, XRD, TGA, and SEM to confirm the grafting of farnesene-derived polymer chains onto the cellulose surface, demonstrating the successful modification and integration of the nanoparticles. Polyfarnesene bio-based rubbers were synthesized through two different polymerization techniques: solution-based coordination polymerization (PFA1) and emulsion-based free radical polymerization (PFA2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!