Structures of complexes formed by HIV-1 reverse transcriptase at a termination site of DNA synthesis.

J Biol Chem

Unité de Physicochimie des Macromolécules Biologiques, Institut Pasteur, CNRS URA 1773, 75724 Paris Cedex 15, France.

Published: August 2001

This study presents structural parameters associated with termination of human immunodeficiency virus, type 1 (HIV-1) reverse transcriptase (RT) at Ter2, the major termination site located in the center of the HIV-1 genome. DNA footprinting studies of various elongation complexes formed by RT around wild type and mutant Ter2 sites have revealed two major structural transformations of these complexes when the enzyme gets closer to Ter2. First, the interactions between RT and the DNA duplex are less extended, although the global affinity of the enzyme for this duplex is only decreased by 2-fold. Second, there is an atypical positioning of the RT RNase H domain on the DNA duplex. We interpret our data as indicating that the A(n)T(m) motif located upstream of Ter2 prevents a classical positioning of the enzyme on the double-stranded part of the DNA duplex at some precise positions of elongation downstream of this motif. Instead, novel species of binary and/or ternary complexes, characterized by atypical footprints, are formed. The new rate-limiting step of the reaction, characterized in the preceding paper (Lavigne, M., Polomack, L., and Buc, H. (2001) J. Biol. Chem. 276, 31429-31438), would be a transition leading from these new species to a catalytically competent ternary complex.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M102976200DOI Listing

Publication Analysis

Top Keywords

dna duplex
12
complexes formed
8
hiv-1 reverse
8
reverse transcriptase
8
termination site
8
dna
5
structures complexes
4
formed hiv-1
4
transcriptase termination
4
site dna
4

Similar Publications

Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been employed for the photodynamic regulation of gene expression by the photo-cross-linking of psoralen with the target DNA. However, stable triplex formation requires a consecutive purine base sequence in one strand of the target DNA duplexes. The pyrimidine-base interruption in the consecutive purine base sequence drastically decreases the thermodynamic stability of the corresponding triplex, which hampers the TFO application.

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

The ability to label synthetic oligonucleotides with fluorescent probes has greatly expanded their nanotechnological applications. To continue this expansion, it is essential to develop approachable, modular, and tunable fluorescent platforms. In this study, we present the synthesis and incorporation of an amino-formyl-thieno[3,2-]thiophene (AFTh) handle at the 5'-position of DNA oligonucleotides.

View Article and Find Full Text PDF

Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha.

Microb Cell Fact

January 2025

National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Background: Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved.

View Article and Find Full Text PDF

Highly sensitive and catalytic electrochemical aptamer-based biosensor for β-lactoglobulin via coupling redox recycling background minimization with DNAzyme amplification.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.

Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!