DNA synthesis by HIV-1 reverse transcriptase at the central termination site: a kinetic study.

J Biol Chem

Unité de Physicochimie des Macromolécules Biologiques, Institut Pasteur, URA1773 du CNRS, 75724 Paris Cedex 15, France.

Published: August 2001

Human immunodeficiency virus, type 1 (HIV-1) reverse transcriptase (RT) terminates plus-strand DNA synthesis at the center of the HIV-1 genome, a process important for HIV-1 infectivity. The central termination sequence contains two termination sites (Ter1 and Ter2) located at the 3'-end of A(n)T(m) motifs, and the narrowing of the DNA minor groove generated by these motifs is responsible for termination. Kinetic data associated with the binding of RT and its ability to elongate in vitro various DNA duplexes and triplexes surrounding the Ter2 terminator were analyzed using a simple kinetic scheme. At Ter2, RT still displays a reasonable affinity for the corresponding DNA, but the binding of the next nucleotide and above all its incorporation rate are markedly hampered. Features affecting the width of the minor groove act directly at this last step. The constraint exerted against elongation by the A(n)T(m) tract persists at two positions downstream of the terminator.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M102974200DOI Listing

Publication Analysis

Top Keywords

dna synthesis
8
hiv-1 reverse
8
reverse transcriptase
8
central termination
8
minor groove
8
dna
5
hiv-1
4
synthesis hiv-1
4
transcriptase central
4
termination
4

Similar Publications

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Recent advances in biocatalytic and chemoenzymatic synthesis of oligonucleotides.

Chembiochem

January 2025

Institut Pasteur, Department of Structural Biology and Chemistry, 28 Rue du Dr. Roux, 75015, Paris, FRANCE.

Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance.

View Article and Find Full Text PDF

Knocking Down in Colorectal Cancer: Implications for Apoptosis and Cell Cycle Arrest via the p53 Signaling Pathway.

Discov Med

January 2025

Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, 154000 Jiamusi, Heilongjiang, China.

Background: Preventing the progression and recurrence of colorectal cancer (CRC) remains a clinical challenge due to its heterogeneity and drug resistance. This underscores the need to discover new targets and elucidate their cancer-promoting mechanisms. This study analyzed the cancer-promoting mechanisms of tryptophanyl-tRNA synthetase 1 () in CRC.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Background: Thymidine kinases (TKs) are key enzymes involved in DNA synthesis and repair, with alterations in their expression associated with various cancers. Thymidine kinase 1 (TK1) and TK2 are cytosolic enzyme proteins that catalyze the addition of a gamma-phosphate group to thymidine. The existing literature on TK1 in cervical squamous cell carcinoma (CESC) fails to address the clinical role of TK1 overexpression and its possible molecular mechanism in CESC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!