Glucose-substituted imidazolidinones related to the endogenous opioid peptide leucine-enkephalin have been investigated using fast atom bombardment tandem mass spectrometry (FAB-MS/MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). In addition to Amadori compounds, the studied imidazolidinones represent a novel type of the early glycation products formed in the Maillard reaction. To obtain insight into the fragmentation behavior of these carbohydrate-peptide adducts, we also studied synthetic precursors of the glucose-substituted imidazolidinones as well as the corresponding isopropylidene derivatives. The collision-induced dissociation (CID) spectra of [M + H](+) ions of all these imidazolidinones have been compared. Detailed analysis showed that fragmentation of each compound generates two ions at m/z 566 and m/z 598 which are characteristic and undoubtedly confirm the imidazolidinone-type structure. These two significant ions were identified as the M + 10 and M + 42 modifications of the N-terminus of the parent opioid pentapeptide effected by the carbohydrate moiety. Furthermore, the ion at m/z 178 is identified as the M + 42 modification of the immonium ion of the N-terminal amino acid (tyrosine) also effected by the carbohydrate moiety. They can be used as diagnostic ions for imidazolidinone-type compounds in studying the Maillard reaction. Thus, we have demonstrated the utility of FAB-MS/MS and ESI-MS/MS in the structural determination and identification of such novel peptide-carbohydrate adducts, useful in understanding the details of the mechanism of non-enzymatic glycation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.334DOI Listing

Publication Analysis

Top Keywords

maillard reaction
12
early glycation
8
glycation products
8
opioid pentapeptide
8
glucose-substituted imidazolidinones
8
tandem mass
8
mass spectrometry
8
effected carbohydrate
8
carbohydrate moiety
8
imidazolidinones
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!