Transhydrogenase undergoes conformational changes to couple the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. The protein comprises three components: dI, which binds NAD(H); dIII, which binds NADP(H); and dII, which spans the membrane. Experiments using isothermal titration calorimetry, analytical ultracentrifugation, and small angle x-ray scattering show that, as in the crystalline state, a mixture of recombinant dI and dIII from Rhodospirillum rubrum transhydrogenase readily forms a dI(2)dIII(1) heterotrimer in solution, but we could find no evidence for the formation of a dI(2)dIII(2) tetramer using these techniques. The asymmetry of the complex suggests that there is an alternation of conformations at the nucleotide-binding sites during proton translocation by the complete enzyme. The characteristics of nucleotide interaction with the isolated dI and dIII components and with the dI(2)dIII(1) heterotrimer were investigated. (a) The rate of release of NADP(+) from dIII was decreased 5-fold when the component was incorporated into the heterotrimer. (b) The binding affinity of one of the two nucleotide-binding sites for NADH on the dI dimer was decreased about 17-fold in the dI(2)dIII(1) complex; the other binding site was unaffected. These observations lend strong support to the alternating-site mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M104429200 | DOI Listing |
Pharmaceutics
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.
: The proton-coupled amino acid transporter (PAT1) is an intestinal absorptive solute carrier responsible for the oral bioavailability of some GABA-mimetic drug substances such as vigabatrin and gaboxadol. In the present work, we investigate if non-steroidal anti-inflammatory drug substances (NSAIDs) interact with substrate transport via human (h)PAT1. : The transport of substrates via hPAT1 was investigated in Caco-2 cells using radiolabeled substrate uptake and in oocytes injected with , measuring induced currents using the two-electrode voltage clamp technique.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.
Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
The nicotinamide adenine dinucleotide phosphate (NADPH) dehydrogenase (NDH) complex is crucial for photosynthetic cyclic electron flow and respiration, transferring electrons from ferredoxin to plastoquinone while transporting H across the chloroplast membrane. This process boosts adenosine triphosphate production, regardless of NADPH levels. In flowering plants, NDH forms a supercomplex with photosystem I, enhancing its stability under high light.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
Budker Institute of Nuclear Physics SB RAS, Acad. Lavrentiev Ave.,11, 630090 Novosibirsk, Russia.
Terahertz (THz) radiation has gained attention due to technological advancements, but its biological effects remain unclear. We investigated the impact of 2.3 THz radiation on SK-MEL-28 cells using metabolomic and gene network analysis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!