Enantiospecific total synthesis of (-)-4-thiocyanatoneopupukeanane.

J Org Chem

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India.

Published: June 2001

Enantiospecific synthesis of the natural enantiomer of the marine sesquiterpene (-)-4-thiocyanatoneopupukeanane (6) is described. The bicyclo[2.2.2]octanecarboxylate 14, obtained from (R)-carvone via Michael-Michael reaction, was transformed into neopupukeananedione 12 by employing rhodium acetate catalyzed intramolecular C-H insertion of the diazo ketones 16 or 19 as the key reaction. Regioselective deoxygenation of the C-2 ketone transformed the dione 12 into neopupukean-4-one 10. Alternately, the keto ester 18 was also transformed into neopupukean-4-one 10 via regioselective deoxygenation of the ketone in 18 followed by intramolecular rhodium carbenoid C-H insertion of the diazo ketone 31. Finally, neopupukean-4-one 10 was transformed into (-)-4-thiocyanatoneopupukeanane 6 via the alcohol 32 and the mesylate 33.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0102765DOI Listing

Publication Analysis

Top Keywords

c-h insertion
8
insertion diazo
8
regioselective deoxygenation
8
enantiospecific total
4
total synthesis
4
synthesis --4-thiocyanatoneopupukeanane
4
--4-thiocyanatoneopupukeanane enantiospecific
4
enantiospecific synthesis
4
synthesis natural
4
natural enantiomer
4

Similar Publications

Long-term risks of gene therapy are not fully understood. In this study, we evaluated safety outcomes in 783 patients over more than 2,200 total patient-years of observation from 38 T cell therapy trials. The trials employed integrating gammaretroviral or lentiviral vectors to deliver engineered receptors to target HIV-1 infection or cancer.

View Article and Find Full Text PDF

Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis.

Chem Commun (Camb)

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

The chemical reactivity between benzene and the "naked" acyclic carbene-like (G13X) species, having two bulky N-heterocyclic boryloxy ligands at the Group 13 center, was theoretically assessed using density functional theory computations. Our theoretical studies show that (BX) preferentially undergoes C-H bond insertion with benzene, both kinetically and thermodynamically, whereas the (AlX) analogue favors a reversible [4 + 1] cycloaddition. Conversely, the heavier carbene analogues ((GaX), (InX), and (TlX)) are not expected to engage in a reaction with benzene.

View Article and Find Full Text PDF

Photochemistry-based silica formation offers a pathway toward energy-efficient and controlled fabrication processes. While the transformation of poly(dimethylsiloxane) (PDMS) to silica (often referred to as SiO due to incomplete conversion) under deep ultraviolet (DUV) irradiation in the presence of oxygen/ozone has experimentally been validated, the detailed mechanism remains elusive. This study demonstrates the underlying molecular-level mechanism of PDMS-to-silica conversion using density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!