Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema.

J Hepatol

Department of Medicine, Chicago VA Healthcare System, Northwestern University, Chicago, Illinois, USA.

Published: April 2001

Background/aim: Brain edema is a common fatal complication in acute liver failure. It is related to an acute change in brain osmolarity secondary to the glial accumulation of glutamine. Since high cerebral blood flow (CBF) precedes cerebral herniation in fulminant hepatic failure we first determined if an increase in brain water and glutamine are prerequisite to a rise in CBF in a model of ammonia-induced brain edema. Secondly, we determined if such a cerebral hyperperfusion is mediated by nitric oxide synthase (NOS).

Methods: Male rats received an end-to-side portacaval anastomosis (PCA). At 24 h, they were anesthetized with ketamine and infused with ammonium acetate (55 microM/kg per min). Studies were performed at 60, 90, 120, 150 and 180 min after starting the ammonia infusion and once the intracranial pressure had risen three-fold (mean 210'). Brain water (BW) was measured using the gravimetry method and CBF with the radioactive microsphere technique. Glutamine (GLN) in the CSF was sampled via a cisterna magna catheter. The neuronal NOS was specifically inhibited by 1-2-trifluoromethylphenyl imidazole (TRIM, 50 mg/kg intraperitoneally) and in separate studies nonspecifically by N-omega-nitro-L-arginine (L-NNA, 2 microg/kg per min intravenously)

Results: At 90', brain water was significantly increased (P < 0.015) as compared to the 60' group while CBF was significantly different at 150'. A significant correlation was observed between values of CBF and brain water (r = 0.88, n = 36, P < 0.001). Administration of either TRIM or L-NNA did not prevent the development of cerebral hyperperfu. sion and edema.

Conclusion: We observed that cerebral hyperemia follows an initial rise in brain water content, rather than in the cerebrospinal fluid concentration of glutamine. The rise in CBF further correlated with brain water accumulation and was of critical importance for the development of intracranial hypertension. The unique mechanism for the rise in CBF in hyperammonemia was not prevented by NOS inhibition indicating that NO is not the mediator of high CBF and intracranial hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-8278(00)00069-6DOI Listing

Publication Analysis

Top Keywords

brain water
24
brain edema
12
rise cbf
12
brain
10
cerebral hyperemia
8
nitric oxide
8
oxide synthase
8
ammonia-induced brain
8
cbf
8
intracranial hypertension
8

Similar Publications

Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants.

Phytother Res

January 2025

Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei.

The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated.

View Article and Find Full Text PDF

Purpose: Fluid exchanges between perivascular spaces (PVS) and interstitium may contribute to the pathophysiology of small vessel disease (SVD). We aimed to analyze water diffusivity measures and their relationship with PVS and other SVD imaging markers.

Methods: We enrolled 50 consecutive patients with a recent small subcortical infarct.

View Article and Find Full Text PDF

Human neural stem cells (hNSCs) possess significant therapeutic potential for the treatment of traumatic brain injury (TBI), a leading cause of global death and disability. Recent pre-clinical studies have shown that hNSCs reduce tissue damage and promote functional recovery through neuroprotective and regenerative signaling and cell replacement. Yet the overall efficacy of hNSCs for TBI indications remains unclear.

View Article and Find Full Text PDF

This study assessed the effects of fenobucarb (F) (1%, 10%, and 20% of the LC-96h value) on the brain cholinesterase (AChE) activity, food intake (FI), feed conversion rate (FCR), and growth of silver barb (, Bleeker, 1849). It also assessed the AChE inhibition levels that cause the abnormal swimming, behavior, and mortality of silver barb and how the feeding regime affects the recovery rate of the AChE activity. The results showed that the brain AChE inhibition increased with the F concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!