Optimizing dissolved air flotation design and saturation.

Water Sci Technol

Departamento de Engenharia de Minas-PPGEM-Laboratório de Tecnologia Mineral e Ambiental-Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha 99/512, 90035-190, Porto Alegre, RS, Brazil.

Published: October 2001

Dissolved air flotation (DAF) of iron hydroxide precipitates at working pressures lower than 3 atm, using modified flotation units to improve the collection of fragile coagula, was studied. Conventional DAF flotation was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. Without surfactants, the minimum saturation pressure required for DAF to occur was found to be 3 atm. But, by lowering the air/water surface tension in the saturator, DAF was possible at a saturation pressure of 2 atm. This behavior was found to occur in both batch and pilot DAF operation tests and almost complete recovery of the precipitates was attained. Results are explained in terms of the minimum "energy" which has to be transferred to the liquid phase to form bubbles by a cavity phenomenon. Further, studies were conducted changing equipment design and feed bubbles size distribution (mixing micro and "mid-sized" bubbles). Thus, bubbles entrance position in the collision-adhesion zone ("capture" zone) was compared to bubble entrance position in the water flow inlet below the floating bed. A "mushroom" type diffuser was used for the "capture zone" experiment and better performance was obtained. Results are explained in terms of different mass transfer phenomena in the collection zone and in the separation zone. Finally, results obtained with the use of a column flotation cell working as normal DAF and with a wide bubble size range are presented. Results indicate good performance and some gains in process kinetics with middle size bubbles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

saturation pressure
12
dissolved air
8
air flotation
8
explained terms
8
entrance position
8
daf
6
flotation
5
bubbles
5
optimizing dissolved
4
flotation design
4

Similar Publications

Remote monitoring of patients with COPD disease using a tablet system: a randomised crossover study of quality-of-life measurements.

ERJ Open Res

January 2025

Department of Respiratory Medicine and Allergology, COPD Center, Sahlgrenska University Hospital and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Background: Remote patient monitoring (RPM) has been evaluated in COPD, but with varying results. We aimed to evaluate whether a tablet system that monitors disease-related parameters in patients with COPD could influence physical and mental health-related quality of life, compared with usual care (UC).

Methods: 70 patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) group D COPD (61% women, aged 71±8 years, forced expiratory volume in 1 s % predicted 41±13%, COPD Assessment Test (CAT) 19±7 points) were recruited at the COPD centre in Gothenburg, Sweden, and randomised to a tablet-based RPM system or UC for a 26-week period, after which they crossed over to the alternative management for another 26 weeks.

View Article and Find Full Text PDF

Tight sandstone gas reservoirs are characterized by high water saturation, significant seepage resistance, low single-well productivity, rapid decline, and low gas recovery. Enhancing the recovery rate of tight sandstone gas reservoirs is a complex engineering challenge that necessitates thorough, refined, and systematic research into its fundamental theories. This study employs a comprehensive approach integrating mercury injection, nuclear magnetic resonance, micro-model visualization, and simulation experiments of displacement and inter-layer seepage flow, alongside foundational seepage theories, to systematically explore the characteristics of tight sandstone gas reservoirs, seepage patterns, and methods for improving gas recovery.

View Article and Find Full Text PDF

The thermal conductivity of liquid -1,2-dichloroethene (R-1130(E)) was measured at temperatures ranging from 240 K to 340 K and pressures up to 25 MPa using a transient hot-wire instrument. A total of 447 thermal conductivity data points were measured along six isotherms. Each isotherm includes data at nine pressures, which were chosen to be at equal density increments starting at a pressure of 0.

View Article and Find Full Text PDF

Sound speed data measured using a dual-path pulse-echo instrument are reported for pure -1,2-dichloroethene (R-1130(E)) and an azeotropic blend of -1,1,1,4,4,4-hexafluorobutene (R-1336mzz(Z)) and R-1130(E) with a composition of 74.8 mass % R-1336mzz(Z) with the balance being R-1130(E). The azeotropic blend of R-1336mzz(Z)/1130(E) is classified as R-514A in ANSI/ASHRAE standard 34.

View Article and Find Full Text PDF

Purpose: The effect of metabolic factors on cardiovascular risk in obstructive sleep apnea (OSA) is unclear. This study aimed to investigate the effect of metabolic factors on the left ventricular diastolic function in patients with OSA.

Patients And Methods: This cross-sectional study included a total of 478 patients with OSA from September 2018 to September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!