Heterologous prime/boost regimens have the potential for raising high levels of immune responses. Here we report that DNA priming followed by a recombinant modified vaccinia Ankara (rMVA) booster controlled a highly pathogenic immunodeficiency virus challenge in a rhesus macaque model. Both the DNA and rMVA components of the vaccine expressed multiple immunodeficiency virus proteins. Two DNA inoculations at 0 and 8 weeks and a single rMVA booster at 24 weeks effectively controlled an intrarectal challenge administered 7 months after the booster. These findings provide hope that a relatively simple multiprotein DNA/MVA vaccine can help to control the acquired immune deficiency syndrome epidemic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1058915 | DOI Listing |
Virology
August 2006
Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, STD and TB Prevention, Centers for Disease Control and Prevention, Mail Stop G-19, 1600 Clifton Road, Atlanta, GA 30333, USA.
Historically, HIV vaccines specifically designed to raise cellular immunity resulted in protection from disease progression but not infection when tested in monkeys challenged with a single high virus exposure. An alternative approach, more analogous to human sexual exposures, is to repetitively challenge immunized monkeys with a much lower dose of virus until systemic infection is documented. Using these conditions to mimic human sexual transmission, we found that a multi-protein DNA/MVA HIV-1 vaccine is indeed capable of protecting rhesus monkeys against systemic infection when repeatedly challenged with a highly heterologous immunodeficiency virus (SHIV).
View Article and Find Full Text PDFVirology
September 2005
Laboratory Branch, Centers for Disease Control and Prevention, Mail Stop G-19, Atlanta, GA 30333, USA.
We developed an AIDS vaccine for Western and West-Central Africa founded on HIV-1 subtype CRF02_AG. Rhesus macaques were primed with Gag-Pol-Env-expressing plasmid DNA and boosted with a recombinant modified vaccinia virus Ankara (rMVA), expressing matched proteins. Two DNA vaccine constructs (IC1-90 and IC48) that differed by point mutations in gag and pol were compared.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
June 2004
Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30329, USA.
Recently, a simian/human immunodeficiency virus (SHIV) vaccine consisting of priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia Ankara (rMVA) has successfully controlled a virulent SHIV challenge in a macaque model. In this, and the accompanying paper, we report on the construction and testing of a Gag-Pol-Env DNA/MVA vaccine for HIV-1/AIDS. The DNA vaccine, pGA2/JS2, expresses aggregates of Gag proteins and includes safety mutations that render it integration, reverse transcription, and packaging defective.
View Article and Find Full Text PDFVaccine
May 2002
Vaccine Research Center, Yerkes Regional Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA.
Heterologous prime/boost regimens have the potential for raising high levels of immune responses. Here, we report that DNA priming followed by a recombinant modified vaccinia Ankara (rMVA) booster has controlled a highly pathogenic immunodeficiency virus challenge in a Rhesus macaque model. Both the DNA and rMVA components of the vaccine expressed multiple immunodeficiency virus proteins.
View Article and Find Full Text PDFScience
April 2001
Vaccine Research Center and Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30329, USA.
Heterologous prime/boost regimens have the potential for raising high levels of immune responses. Here we report that DNA priming followed by a recombinant modified vaccinia Ankara (rMVA) booster controlled a highly pathogenic immunodeficiency virus challenge in a rhesus macaque model. Both the DNA and rMVA components of the vaccine expressed multiple immunodeficiency virus proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!