Muscarinic receptors have been implicated in the regulation of cognition and psychosis based on pharmacological evidence from pre-clinical and clinical studies. Muscarinic agonists have shown promise in the clinic in improving cognition and reducing psychotic episodes in Alzheimer's patients. However, lack of selective muscarinic ligands has limited their use due to troublesome side effects observed at higher doses. Without selective ligands, it has been difficult to assign a specific muscarinic receptor subtype to these high order mental processes. Recent development of muscarinic receptor knockout mice has provided additional tools to investigate cognition and psychosis in behavioral assays and to determine the receptor subtypes associated with parasympathomimetic physiology. Biochemical studies indicate that the M1 receptor plays a significant role in regulating G alpha q-mediated signal transduction in the hippocampus and cortex. Behavioral studies suggest that the M4 receptor is involved in movement regulation and prepulse inhibition of the startle reflex, a measure of attention. These findings support a role for the development of M1 and M4 receptor agonists for diseases in which symptoms include cognitive impairment and psychotic behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0024-3205(01)01059-1 | DOI Listing |
F1000Res
January 2025
German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany.
Background: Muscarinic receptor agonism and positive allosteric modulation is a promising mechanism of action for treating psychosis, not present in most D2R-blocking antipsychotics. Xanomeline, an M1/M4-preferring agonist, has shown efficacy in late-stage clinical trials, with more compounds being investigated. Therefore, we aim to synthesize evidence on the preclinical efficacy of muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis to provide unique insights and evidence-based information to guide drug development.
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
This study aimed to characterize the triple-hit schizophrenia-like model rats (Wisket) by the assessment of (1) behavioral parameters in different test conditions (reward-based Ambitus test and HomeManner system) for a prolonged period, (2) cerebral muscarinic M1 receptor (M1R) expression, and (3) the effects of olanzapine treatment on these parameters. Wistar (control) and Wisket rats were injected for three consecutive weeks with olanzapine depot (100 mg/kg) and spent 4 weeks in large cages with environmental enrichment (HomeManner). The vehicle-treated Wisket rats spent longer time awake with decreased grooming activity compared to controls, without changes in their active social behavior (sniffing, playing, fighting) obtained in HomeManner.
View Article and Find Full Text PDFJ Med Chem
January 2025
Research and Development, Health-Shield, Vedicinals-9, 40764 Langenfeld, Germany.
In addition to the conventional symptoms reported for COVID-19, it is becoming increasingly clear that patients with long COVID are exhibiting new symptoms due to the emergence of autoantibodies against G-protein-coupled receptors, among which human muscarinic cholinergic receptors (CHRMs) have been prominently reported. With a chronic condition such as long COVID, additional symptoms caused by anti-CHRM autoantibodies (AAbs) have proven to be an added burden on these patients. The origins of these AAbs, their interactions with, and effects on the function of neural and non-neural cells within the nervous system have remained unknown.
View Article and Find Full Text PDFAcetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .
View Article and Find Full Text PDFPharmacol Res
January 2025
Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States. Electronic address:
Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!