Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein.

Mol Cell

Department of Oncological Sciences, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.

Published: May 2001

The adenomatous polyposis coli (APC) tumor-suppressor protein, together with Axin and GSK3beta, forms a Wnt-regulated signaling complex that mediates phosphorylation-dependent degradation of beta-catenin by the proteasome. Siah-1, the human homolog of Drosophila seven in absentia, is a p53-inducible mediator of cell cycle arrest, tumor suppression, and apoptosis. We have now found that Siah-1 interacts with the carboxyl terminus of APC and promotes degradation of beta-catenin in mammalian cells. The ability of Siah-1 to downregulate beta-catenin signaling was also demonstrated by hypodorsalization of Xenopus embryos. Unexpectedly, degradation of beta-catenin by Siah-1 was independent of GSK3beta-mediated phosphorylation and did not require the F box protein beta-TrCP. These results indicate that APC and Siah-1 mediate a novel beta-catenin degradation pathway linking p53 activation to cell cycle control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1097-2765(01)00241-6DOI Listing

Publication Analysis

Top Keywords

degradation beta-catenin
12
novel beta-catenin
8
beta-catenin degradation
8
degradation pathway
8
pathway linking
8
linking p53
8
adenomatous polyposis
8
polyposis coli
8
cell cycle
8
siah-1
6

Similar Publications

Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.

Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).

View Article and Find Full Text PDF

2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remine unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. The roles of the transcription factor special AT-rich binding protein-2 (SATB2) and β-catenin in PDAC have been a subject of controversy. We aimed to assess the diagnostic and prognostic impact of SATB2 and β-catenin in PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!