1. The role of intracellular Ca(2+) mobilization in the mechanism of increased endothelial permeability was studied. Human umbilical vein endothelial cells (HUVECs) were exposed to thapsigargin or thrombin at concentrations that resulted in similar increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). The rise in [Ca(2+)](i) in both cases was due to release of Ca(2+) from intracellular stores and influx of extracellular Ca(2+). 2. Both agents decreased endothelial cell monolayer electrical resistance (a measure of endothelial cell shape change) and increased transendothelial (125)I-albumin permeability. Thapsigargin induced activation of PKCalpha and discontinuities in VE-cadherin junctions without formation of actin stress fibres. Thrombin also induced PKCalpha activation and similar alterations in VE-cadherin junctions, but in association with actin stress fibre formation. 3. Thapsigargin failed to promote phosphorylation of the 20 kDa myosin light chain (MLC(20)), whereas thrombin induced MLC(20) phosphorylation consistent with formation of actin stress fibres. 4. Calphostin C pretreatment prevented the disruption of VE-cadherin junctions and the decrease in transendothelial electrical resistance caused by both agents. Thus, the increased [Ca(2+)](i) elicited by thapsigargin and thrombin may activate a calphostin C-sensitive PKC pathway that signals VE-cadherin junctional disassembly and increased endothelial permeability. 5. Results suggest a critical role for Ca(2+) signalling and activation of PKCalpha in mediating the disruption of VE-cadherin junctions, and thereby in the mechanism of increased endothelial permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278647 | PMC |
http://dx.doi.org/10.1111/j.1469-7793.2001.0433a.x | DOI Listing |
Geroscience
January 2025
Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Laboratory of Translational Medicine in Microvascular Regulation, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Shandong Provincial Key Laboratory of Medicine in Microvascular Ageing; Laboratory of Future Industry of Gene Editing in Vascular Endothelial Cells of Universities in Shandong Province, Jinan, China.
Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.
View Article and Find Full Text PDFCells
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, UMSOM Lung Biology Program, University of Maryland School of Medicine, 20 Penn Street, HSF-2, Room S143, Baltimore, MD 21201, USA.
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined the role of extracellular acidification on human pulmonary endothelial cell (EC) permeability and inflammatory status per se and investigated potential synergistic effects of acidosis on endothelial dysfunction caused by bacterial lipopolysaccharide (LPS, ).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
Background: Systemic diseases are often associated with endothelial cell (EC) dysfunction. A key function of ECs is to maintain the barrier between the blood and the interstitial space. The integrity of the endothelial cell barrier is maintained by VE-Cadherin homophilic interactions between adjacent cells.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
Schlemm's canal endothelial cells (SECs) serve as the final barrier to aqueous humor (AQH) drainage from the eye. SECs adjust permeability to AQH outflow to modulate intraocular pressure (IOP). The broad identification of IOP-related genes implicates SECs in glaucoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!