The bacterium Porphyromonas gingivalis is a major etiologic agent in the pathogenesis of adult periodontitis in humans. Cysteine proteinases produced by this pathogen, termed gingipains, are considered to be important virulence factors. Among many other potentially deleterious activities, arginine-specific gingipains-R (RgpB and HRgpA) efficiently activate coagulation factors. To further expand knowledge of the interaction between gingipains and the clotting cascade, this study examined their effects on cellular components of the coagulation system. The enzymes induced an increase in intracellular calcium in human platelets at nanomolar concentrations and caused platelet aggregation with efficiency comparable to thrombin. Both effects were dependent on the proteolytic activity of the enzymes. Based on desensitization studies carried out with thrombin and peptide receptor agonists, and immunoinhibition experiments, gingipains-R appeared to be activating the protease-activated receptors, (PAR)-1 and -4, expressed on the surface of platelets. This was confirmed by the finding that HRgpA and RgpB potently activated PAR-1 and PAR-4 in transfected cells stably expressing these receptors. Cumulatively, the results indicate the existence of a novel pathway of host cell activation by bacterial proteinases through PAR cleavage. This mechanism not only represents a new trait in bacterial pathogenicity, but may also explain an emerging link between periodontitis and cardiovascular disease. (Blood. 2001;97:3790-3797)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood.v97.12.3790 | DOI Listing |
Biochimie
January 2025
Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil. Electronic address:
PA-BJ is a serine protease present in Bothrops jararaca venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins in vitro, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin.
View Article and Find Full Text PDFSemin Thromb Hemost
January 2025
Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.
Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.
View Article and Find Full Text PDFWhile key for pathogen immobilization, neutrophil extracellular traps (NETs) often cause severe bystander cell/tissue damage. This was hypothesized to depend on their prolonged presence in the vasculature, leading to cytotoxicity. Imaging of NETs (histones, neutrophil elastase, extracellular DNA) with intravital microscopy in blood vessels of mouse livers in a pathogen-replicative-free environment (endotoxemia) led to detection of NET proteins attached to the endothelium for months despite the early disappearance of extracellular DNA.
View Article and Find Full Text PDFBMJ Open Respir Res
January 2025
Murdoch Children's Research Institute, Parkville, Victoria, Australia.
Background: The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
Autoimmune diseases are complex conditions characterized by immune-mediated tissue damage and chronic inflammation. Protease-activated receptor 2 (Par2) has been implicated in these diseases, exhibiting dual roles that complicate its therapeutic potential. This review examines the perplexing functions of Par2, which promotes inflammation through immune cell activation while facilitating tissue healing in damaged organs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!