Recent evidence suggests that reactive oxygen species (ROS) might act as modulators of neuronal processes, including synaptic transmission. Here we report that synaptic dopamine (DA) release can be modulated by an endogenous ROS, H(2)O(2). Electrically stimulated DA release was monitored in guinea pig striatal slices using carbon-fiber microelectrodes with fast-scan cyclic voltammetry. Exogenously applied H(2)O(2) reversibly inhibited evoked release in the presence of 1.5 mM Ca(2+). The effectiveness of exogenous H(2)O(2), however, was abolished or decreased by conditions that enhance Ca(2+) entry, including increased extracellular Ca(2+) concentration ([Ca(2+)](o); to 2.4 mM), brief, high-frequency stimulation, and blockade of inhibitory D(2) autoreceptors. To test whether DA release could be modulated by endogenous H(2)O(2), release was evoked in the presence of the H(2)O(2)-scavenging enzyme, catalase. In the presence of catalase, evoked [DA](o) was 60% higher than after catalase washout, demonstrating that endogenously generated H(2)O(2) can also inhibit DA release. Importantly, the Ca(2+) dependence of the catalase-mediated effect was opposite to that of H(2)O(2): catalase had a greater enhancing effect in 2.4 mM Ca(2+) than in 1.5 mM, consistent with enhanced H(2)O(2) generation in higher [Ca(2+)](o). Together these data suggest that H(2)O(2) production is Ca(2+) dependent and that the inhibitory mechanism can be saturated, thus preventing further effects from exogenous H(2)O(2). These findings show for the first time that endogenous H(2)O(2) can modulate vesicular neurotransmitter release, thus revealing an important new signaling role for ROS in synaptic transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.2001.85.6.2468 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.
This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.
View Article and Find Full Text PDFAnal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Field analysis of heavy metals in biological samples is essential for assessing their potential threats to human health. The development of portable pretreatment and detection devices is crucial to address this challenge. Herein, a magnetic field-accelerated nonthermal plasma digestion device using dielectric barrier discharge (DBD) is designed for the rapid and environmentally friendly pretreatment of biological samples and subsequently combined with point discharge-optical emission spectrometry (PD-OES) for sensitive determination of heavy metals.
View Article and Find Full Text PDFChem Sci
January 2025
Instituto de Carboquímica (ICB-CSIC) C/Miguel Luesma Castán 4 E-50018 Zaragoza Spain
Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Glaucoma, a leading cause of irreversible blindness, is characterized by optic neuropathy and retinopathy, with primary open-angle glaucoma (POAG) being the most prevalent form. The primary pathogenic mechanism of POAG involves elevated intraocular pressure caused by chronic fibrosis of the trabecular meshwork (TM). Autophagy, a critical process for maintaining cellular homeostasis, has been implicated in fibrosis across various organs.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
The suppression of tyrosinase (TYR), a key enzyme in melanogenesis, has been suggested as an effective strategy for preventing melanin accumulation. We previously discovered the novel chrysin derivative hydroxyethyl chrysin (HE-chrysin) through an irradiation technique, which exerted higher anti-inflammatory and anti-cancer activities than original chrysin. In the present study, we explored whether HE-chrysin has antioxidant and anti-melanogenic capacity using B16F10 murine melanoma cells and molecular docking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!