A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel neurodevelopmental syndrome responsive to 5-hydroxytryptophan and carbidopa. | LitMetric

A novel neurodevelopmental syndrome responsive to 5-hydroxytryptophan and carbidopa.

Mol Genet Metab

Division of Paediatric Neurology, Department of Pediatrics, University Hospital Aachen, 52074 Aachen, Germany.

Published: June 2001

Tryptophan hydroxylase (TPH; EC 1.14.16.4) catalyzes the first rate-limiting step of serotonin biosynthesis by converting l-tryptophan to 5-hydroxytryptophan. Serotonin controls multiple vegetative functions and modulates sensory and alpha-motor neurons at the spinal level. We report on five boys with floppiness in infancy followed by motor delay, development of a hypotonic-ataxic syndrome, learning disability, and short attention span. Cerebrospinal fluid (CSF) analysis showed a 51 to 65% reduction of the serotonin end-metabolite 5-hydroxyindoleacetic acid (5HIAA) compared to age-matched median values. In one out of five patients a low CSF 5-methyltetrahydrofolate (MTHF) was present probably due to the common C677T heterozygous mutation of the methylenetetrahydrofolate reductase (MTHFR) gene. Baseline 24-h urinary excretion showed diminished 5HIAA values, not changing after a single oral load with l-tryptophan (50-70 mg/kg), but normalizing after 5-hydroxytryptophan administration (1 mg/kg). Treatment with 5-hydroxytryptophan (4-6 mg/kg) and carbidopa (0.5-1.0 mg/kg) resulted in clinical amelioration and normalization of 5HIAA levels in CSF and urine. In the patient with additional MTHFR heterozygosity, a heterozygous missense mutation within exon 6 (G529A) of the TPH gene caused an exchange of valine by isoleucine at codon 177 (V177I). This has been interpreted as a rare DNA variant because the pedigree analysis did not provide any genotype-phenotype correlation. In the other four patients the TPH gene analysis was normal. In conclusion, this new neurodevelopmental syndrome responsive to treatment with 5-hydroxytryptophan and carbidopa might result from an overall reduced capacity of serotonin production due to a TPH gene regulatory defect, unknown factors inactivating the TPH enzyme, or selective loss of serotonergic neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mgme.2001.3187DOI Listing

Publication Analysis

Top Keywords

tph gene
12
neurodevelopmental syndrome
8
syndrome responsive
8
5-hydroxytryptophan carbidopa
8
treatment 5-hydroxytryptophan
8
5-hydroxytryptophan
5
tph
5
novel neurodevelopmental
4
responsive 5-hydroxytryptophan
4
carbidopa tryptophan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!