Multiple signal transduction pathways mediate interleukin-4-induced 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase in normal and tumoral target tissues.

J Steroid Biochem Mol Biol

Laboratory of Hereditary Cancers, Oncology and Molecular Endocrinology Research Center, CHUL Research Center and Laval University, 2705 Laurier Blvd, Quebec, G1V 4G2, Quebec City, Canada.

Published: July 2001

The 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD) isoenzymes catalyze an essential step in the formation of all classes of active steroid hormones. We have recently shown that 3beta-HSD type 1 gene expression is specifically induced by interleukin (IL)-4 and IL-13 in several human cancer cell lines and in normal human mammary and prostatic epithelial cells in primary culture. There is evidence that IL-4 stimulates bifurcating signaling pathways in which the Stat6-signal pathway is involved in differentiation and gene regulation, whereas insulin receptor substrate (IRS) proteins mediate the mitogenic action of IL-4. As a matter of fact, we have shown that IL-4-activated Stat6 in all cell lines studied, where IL-4 induced 3beta-HSD type 1 expression but not in those cell lines that failed to respond to IL-4. The mechanism of the induction of 3beta-HSD type 1 gene expression was further characterized in ZR-75-1 human breast cancer cells. We have also found that IL-4 rapidly induced IRS-1 and IRS-2 phosphorylation in these cell lines. Moreover, insulin-like growth factor (IGF)-1 and insulin, which are well known to cause IRS-1 and IRS-2 phosphorylation, increased the stimulatory effect of IL-4 on 3beta-HSD activity. IRS-1 and IRS-2 are adapter molecules that provide docking sites for different SH2 domain-containing proteins, leading to the activation of multiple pathways, such as the phosphatidylinositol (PI) 3-kinase and the mitogen-activated protein (MAP) pathways. The inhibition of IL-4-induced 3beta-HSD expression by PI 3-kinase inhibitors (wortmannin and LY294002) as well as an inhibitor of MAP kinase activation (PD98059), indicates the involvement of those pathways in this response to IL-4. Wortmannin also blocked MAP kinase activation by IL-4, insulin and IGF-1 suggesting that the MAP kinase cascade acts as a downstream effector of PI 3-kinases. Furthermore, we showed that the PKC activator phorbol-12-myristate-13-acetate (PMA) also potentiated the IL-4-induced 3beta-HSD activity, thus suggesting that one signaling molecule that is involved in the signal transduction of the IL-4 action on 3beta-HSD type 1 expression is also a substrate for PKC. Taken together, these findings suggest the existence of a novel mechanism of gene regulation by IL-4. This mechanism would involve in the phosphorylation of IRS-1 and IRS-2, which transduce the IL-4 signal through a PI 3-kinase- and MAP kinase-dependent signaling pathway. However, the inability of IGF-1, insulin and PMA to stimulate 3beta-HSD type 1 expression by themselves in the absence of IL-4 indicates that the multiple pathways downstream of IRS-1 and IRS-2 must act in cooperation with an IL-4-specific signaling molecule, such as the transcription factor Stat6. It is also of interest to note that there also appear to be differences between the regulation of the 3beta-HSD type 1 and type 2 promoters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-0760(00)00148-5DOI Listing

Publication Analysis

Top Keywords

3beta-hsd type
24
irs-1 irs-2
20
cell lines
16
il-4
13
type expression
12
map kinase
12
3beta-hsd
10
signal transduction
8
3beta-hydroxysteroid dehydrogenase/delta5-delta4
8
dehydrogenase/delta5-delta4 isomerase
8

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

Rare Types of Congenital Adrenal Hyperplasias Other Than 21-hydroxylase Deficiency.

J Clin Res Pediatr Endocrinol

January 2025

University of Health Sciences Turkey, Dr. Sami Ulus Child Health and Diseases Training and Research Hospital, Clinic of Pediatric Endocrinology, Ankara, Turkey

Although the most common cause of congenital adrenal hyperplasia (CAH) worldwide is 21-hydroxylase deficiency (21-OHD), which accounts for more than 95% of cases, other rare causes of CAH such as 11-beta-hydroxylase deficiency (11β-OHD), 3-beta-hydroxy steroid dehydrogenase (3β-HSD) deficiency, 17-hydroxylase deficiency and lipoid CAH (LCAH) may also be encountered in clinical practice. 11β-OHD is the most common type of CAH after 21-OHD, and CYP11B1 deficiency in adrenal steroidogenesis causes the inability to produce cortisol and aldosterone and the excessive production of adrenal androgens. Although the clinical and laboratory features are similar to 21-OHD, findings of mineralocorticoid deficiency are not observed.

View Article and Find Full Text PDF

DEHP-mediated oxidative stress leads to impaired testosterone synthesis in Leydig cells through the cAMP/PKA/SF-1/StAR pathway.

Environ Pollut

February 2025

Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China. Electronic address:

Leydig cells (LCs) injury is often irreversible upon discovery; hence, early identification of risk factors for injury is crucial. The ubiquitous plasticizer di-2-ethylhexyl phthalate (DEHP) in the environment has been shown to potentially cause damage to LCs. However, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Parabens are widely used as preservatives in personal care products and are linked to potential disruptions in placental steroidogenesis. However, their exact impact remains unclear. This study aimed to explore the inhibition, mechanisms, structure-activity relationships (SAR) of parabens on human placental 3β-hydroxysteroid dehydrogenase type 1 (h3β-HSD1) and its rat counterpart, r3β-HSD4.

View Article and Find Full Text PDF

3β-Hydroxysteroid dehydrogenases (3β-HSDs) catalyze the oxidative conversion of delta (5)-ene-3-beta-hydroxy steroids and ketosteroids. Human 3β-HSD type 2 (HSD3B2) is predominantly expressed in gonadal and adrenal steroidogenic cells for producing all classes of active steroid hormones. Mutations in HSD3B2 gene cause a rare form of congenital adrenal hyperplasia with varying degree of salt wasting and incomplete masculinization, resulting from reduced production of corticoids and androgens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!