Efficient vaccination practices.

Pediatr Ann

Child Health Clinic, Children's Hospital of Denver, USA.

Published: May 2001

Download full-text PDF

Source
http://dx.doi.org/10.3928/0090-4481-20010501-11DOI Listing

Publication Analysis

Top Keywords

efficient vaccination
4
vaccination practices
4
efficient
1
practices
1

Similar Publications

The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.

View Article and Find Full Text PDF

Molecular Mechanism of VSV-Vectored ASFV Vaccine Activating Immune Response in DCs.

Vet Sci

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China.

The vesicular stomatitis virus (VSV)-vectored African swine fever virus (ASFV) vaccine can induce efficient immune response, but the potential mechanism remains unsolved. In order to investigate the efficacy of recombinant viruses (VSV-p35, VSV-p72)-mediated dendritic cells (DCs) maturation and the mechanism of inducing T-cell immune response, the functional effects of recombinant viruses on DC activation and target antigens presentation were explored in this study. The results showed that surface-marked molecules (CD80, CD86, CD40, and MHC-II) and secreted cytokines (IL-4, TNF-α, IFN-γ) were highly expressed in the recombinant virus-infected DCs.

View Article and Find Full Text PDF

Background: Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake.

Methods And Results: In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.

View Article and Find Full Text PDF

Background/objectives: Approved mRNA vaccines commonly use sequences modified with pseudouridine to enhance translation efficiency and mRNA stability. However, this modification can result in ribosomal frameshifts, reduced immunogenicity, and higher production costs. This study aimed to explore the potential of unmodified mRNA sequences for varicella-zoster virus (VZV) and evaluate whether codon optimization could overcome the limitations of pseudouridine modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!