A comparison is made of the retention properties of additives applied as positively charged pseudo-stationary phases for electrokinetic chromatography of neutral analytes. All additives have a quaternary ammonium as functional group. The polymeric additive [poly(N,N,N',N'-tetramethyl-N-trimethylenehexamethylenediammonium), Polybrene] has a concentration of 2% (w/w) in the background electrolyte (acetate, pH 5.2). Monomeric octyltrimethylammonium (OTMA) was used at a concentration below or above its critical micelle concentration (CMC) (140 mmol/l). At a concentration (259 mmol/l) above the CMC the system is that normally used for micellar electrokinetic chromatography with cationic micelles. However, even below the CMC, where OTMA is present as monomer, retention of the neutral analytes is observed as well. In all systems coating of the capillary wall with Polybrene establishes an electroosmotic flow directed towards the anode, counter-migrating to the electrophoretic movement of the additive. Based on the measurement of the mobility of the analytes (15 small, monofunctional aromatic compounds with different functional groups), their capacity factors, k(i), were determined in all systems. Low correlation of the k(i) values is observed between the particular systems, indicating their different selectivity at least for individual pairs of analytes. Based on the log k(i) values, a linear free energy relationship was applied to elucidate the main types of chemical interaction responsible for retention. As a result, cavity formation and n or pi electron interactions were found being significant for the micellar OTMA system, which agrees with findings described in the literature for other (cationic and anionic) micellar systems. For the polymeric system and for the monomeric OTMA system, the significant retention parameter is indicating n and pi electron interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9673(01)00615-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!