Abatement of waste-water biorefractory organics via electro-oxidative treatment.

Ann Chim

Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino.

Published: July 2001

The electrochemical oxidation of coumaric acid, a biorefractory compound present in several industrial waste waters, has been investigated by use of Pt-Ti anodes and at electrolyte concentration (0.02 N NaCl or Na2SO4) low enough to allow direct dischargeability of the waste water into superficial water basins according to the Italian law (DL 152/11-5-99). Particularly, the role of the electrolyte over the conversion rate has been assessed. The obtained results show that the oxidation process should take place both at the electrode surface and in the bulk of the solution, via electrochemically-generated oxidising species (H2O2, persulfates, Cl2, NaClO). The faster coumaric acid abatement rates were found with chloride based electrolytes, which, however, lead to the formation of non-biodegradable small-molecular-weight chlorinated hydrocarbons.

Download full-text PDF

Source

Publication Analysis

Top Keywords

coumaric acid
8
abatement waste-water
4
waste-water biorefractory
4
biorefractory organics
4
organics electro-oxidative
4
electro-oxidative treatment
4
treatment electrochemical
4
electrochemical oxidation
4
oxidation coumaric
4
acid biorefractory
4

Similar Publications

Honey contains natural biologically active compounds, and its preventive and healing properties are primarily linked to its antioxidant activity. The antioxidant properties of honey can be related to the botanical origin and content of phenolic compounds. We tested 84 honey samples from Poland, representing eight honey varieties: acacia, phacelia, buckwheat, linden, rapeseed, heather, goldenrod, and honeydew.

View Article and Find Full Text PDF

Background: Tartary buckwheat is a plant recognized for its resistance to various environmental stresses. Due to its valuable source of phenolic compounds, is also characterized as a medicinal plant; therefore, the aim of this study was to investigate the drought stress for the levels of phenolic compounds in the morphological parts of the plant.

Methods: This experiment was conducted in 7 L pots under laboratory conditions.

View Article and Find Full Text PDF

Colistin-resistant (COLR-Ab) is an opportunistic pathogen commonly associated with nosocomial infections, and it is difficult to treat with current antibiotics. Therefore, new antimicrobial agents need to be developed for treatment. Based on this information, we investigated the antimicrobial, antibiofilm, and combination activities of -coumaric acid (-CA), ferulic acid (FA), and -methoxycinnamic acid (-MCA) against five COLR-Ab isolates.

View Article and Find Full Text PDF

Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review.

Antioxidants (Basel)

January 2025

Research Group on Technology Applied to Exercise Physiology-GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil.

This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways.

View Article and Find Full Text PDF

Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures.

Trends Biotechnol

January 2025

Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium. Electronic address:

Much attention has focused on understanding microbial interactions leading to stable co-cultures. In this work, substrate pulsing was performed to promote better control of the metabolic niches (MNs) corresponding to each species, leading to the continuous co-cultivation of diverse microbial organisms. We used a cell-machine interface, which allows adjustment of the temporal profile of two MNs according to a rhythm, ensuring the successive growth of two species, in our case, a yeast and a bacterium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!