Background: Werner syndrome (WS) is an autosomal recessive disorder with many features of premature ageing. Cells derived from WS patients show genomic instability, aberrations in the S-phase and sensitivity to genotoxic agents. The gene responsible for WS (WRN) encodes a DNA helicase belonging to the RecQ helicase family. Although biochemical studies showed that the gene product of WRN (WRNp) interacts with proteins that participate in DNA metabolism, its precise biological function remains unclear.

Results: Using immunocytochemistry, we found that WRNp forms distinct nuclear foci in response to DNA damaging agents, including camptothecin (CPT), etoposide, 4-nitroquinolin-N-oxide and bleomycin. The presence of aphidicolin inhibited CPT-induced WRNp foci strongly but not bleomycin-induced foci. These WRNp foci overlapped with the foci of replication protein A (RPA) almost entirely and with the foci of Rad51 partially, implicating cooperative functions of these proteins in response to DNA damage. We also found that WRNp foci partially co-localize with sites of 5-bromo-2'-deoxy-uridine incorporation.

Conclusions: These findings suggest that WRNp form nuclear foci in response to aberrant DNA structures, including DNA double-strand breaks and stalled replication forks. We propose that WRNp takes part in the homologous recombinational repair and in the processing of stalled replication forks.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2443.2001.00433.xDOI Listing

Publication Analysis

Top Keywords

nuclear foci
12
foci response
12
response dna
12
wrnp foci
12
foci
9
dna damaging
8
damaging agents
8
stalled replication
8
replication forks
8
dna
7

Similar Publications

The kinetics of uracil-N-glycosylase distribution inside replication foci.

Sci Rep

January 2025

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.

Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication.

View Article and Find Full Text PDF

An 8-year-old girl with refractory high-risk neuroblastoma underwent 68Ga-DOTATATE PET/CT to evaluate the feasibility of potential 177Lu-DOTATATE therapy. The scan showed multiple foci of abnormal 68Ga-DOTATATE accumulation in the bone region, indicating the presence of bone metastases. Unexpectedly, an abnormal tracer uptake was noted in the left lateral ventricle area.

View Article and Find Full Text PDF

A high-fat diet could lead to obesity, increasing colorectal cancer risk due to dyslipidemia and chronic inflammation, while Piper betle (PB) exhibits anti-tumor, anti-inflammation, and anti-oxidant benefits. This study aimed to determine whether PB possesses chemopreventive effects on high-fat diet (HFD)-induced and azoxymethane (AOM)-induced colon cancer. Male Sprague-Dawley rats receiving either a normal diet or HFD were divided into control, PB, AOM, and AOM+PB subgroups which were then sacrificed after 24 weeks.

View Article and Find Full Text PDF

Temporal and spatial pattern of DNA damage in neurons following spinal cord Injury in mice.

J Biomed Sci

January 2025

Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.

Background: Deficient DNA repair and excessive DNA damage contribute to neurodegenerative disease. However, the role of DNA damage and repair in spinal cord injury (SCI) is unclear. SCI, a debilitating disruption of the structural and biological network of the spinal cord, is characterized by oxidative stress.

View Article and Find Full Text PDF

Background: PSMA PET/CT emerges as a pivotal technology in the diagnostic landscape of prostate cancer (PCa). It offers a suite of imaging interpretation criteria, notably the maximum standardized uptake value (SUVmax), the molecular imaging prostate-specific membrane antigen score (miPSMA score), and the PSMA reporting and data system (PSMA-RADS). Identifying the most valuable criteria for diagnosing PCa and standardizing imaging interpretation across various tracers is an unresolved question.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!