In this study, an anaerobic fluidized bed reactor (AFBR) was used to treat a synthetically produced pink water waste stream containing trinitrotoluene (TNT). The synthesized waste consisted of 95 mg/l-TNT, the main contaminant in pink water, which was to be co-metabolized with 560-mg/l ethanol. Granular activated carbon was used as the attachment medium for biological growth. TNT was reduced to a variety of compounds, mainly 2,4,6-triaminotoluene (2,4,6-TAT), 2,4-diamino-6-nitrotoluene (2,4-DA-6-NT), 2,6-diamino-4-nitrotoluene (2,6-DA-4-NT), 2-amino-4,6-dinitrotoluene (2-A-4,6-DNT), and 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT). These conversions resulted through the oxidation of ethanol to carbon dioxide under anoxic conditions, or reduction to methane under methanogenic conditions. The anaerobic reactor was charged with 1.0 kg of 16 x 20 U.S. Mesh Granular Activated Carbon (GAC) and was pre-loaded with 200 g of TNT prior to the addition of the mixed seed culture. During the first three weeks of operation, ethanol was completely degraded and no methane was produced. Effluent inorganic carbon revealed stoichiometric conversion of the feed ethanol to dissolved inorganic carbon with accumulation of carbon dioxide in the headspace of the reactor. GAC extraction showed incremental reduction of the nitro groups to amino groups, with 2,4,6-TAT as the final product. After three weeks, the oxygen from the nitro groups was depleted and methane production commenced. The reproducibility of this phenomenon was confirmed by repeating the experiment in the same manner using an identical AFBR. Furthermore, serum bottle tests were conducted using TNT loading ratios of 0.2, 0.4, 0.8, 1.0 g-TNT/g-GAC as well as experiments in the absence of GAC. Similar behavior to that of the columns was observed, with degradation rates varying according to the particular condition. GAC greatly enhanced the degradation rates and the higher TNT loading resulted in slower degradation rates of ethanol.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
This study investigates the mechanical and microstructural properties of loose sandy soil stabilized with alkali-activated Ground Granulated Blast Furnace Slag (GGBFS). To examine the effects of varying GGBFS contents, curing times, and confining pressures on mechanical behavior, undrained triaxial and unconfined compressive strength (UCS) tests were conducted. Microstructural analyses using FE-SEM, EDX, and FTIR were performed to elucidate the nature and development of cementation.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People's Republic of China.
Background: Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited.
Purpose: This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling.
Health Informatics J
January 2025
College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
Show the generalizability of an ingredient-based method to automatically create an up-to-date, error-free, complete list of medication codes (e.g., opioid medications with at least one opioid ingredient) from an ingredient list (e.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFSci Total Environ
January 2025
Uppsala Water and Waste Ltd, Box 1444, 751 44 Uppsala, Sweden.
Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!