Objective: The effect of sodium bicarbonate on intracellular pH under conditions close to those in vivo, with both bicarbonate and nonbicarbonate buffering systems, is unknown. We postulated that this effect depends on the nonbicarbonate buffering capacity because the alkali-induced back-titration of these buffers results in a concentration-dependent release of CO2 in the extracellular space, leading to a decrease in intracellular pH.

Design: The study was conducted in two stages. First, human hepatocytes were perfused with pH 7 bicarbonate-buffered medium (5 mM HCO3-, 20 torr Pco2) containing no nonbicarbonate buffer or small amounts (5 mM 4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid [HEPES]) or large amounts (20 mM HEPES) of nonbicarbonate buffer. Second, the changes in intracellular pH of hepatocytes placed in acidotic human blood (pH 7, 5 mM HCO3-, 20 torr Pco2) at three hematocrits (40%, 20%, and 5%) were measured.

Setting: Research laboratory at a medical university.

Subjects: Cryopreserved human hepatocytes thawed the day before the experiments.

Interventions: Sodium bicarbonate was infused for 10 mins to increase the HCO3- concentration from 5 to 30 mM. In the second part, 20 mM sodium bicarbonate was added directly to the blood bathing the cells.

Measurements And Main Results: The intracellular pH was measured with the pH-sensitive fluorescent dye bis-carboxyethyl carboxy-fluorescein in its esterified form, acetoxy-methyl ester, by using a single-cell imaging technique. Gas analyses were performed before and during the sodium bicarbonate load. Sodium bicarbonate caused a decrease in intracellular pH with all media except the artificial medium containing no HEPES. This decrease was small in media with low nonbicarbonate buffering capacity (5 mM HEPES and 5% hematocrit blood) and large in media with high nonbicarbonate buffering capacity (20 mM HEPES and 40% hematocrit blood). The change in intracellular pH was linked closely to the change in Pco2 caused by the sodium bicarbonate.

Conclusions: The effect of sodium bicarbonate on intracellular pH depends on changes in Pco2 in the medium bathing the cells. The increase in Pco2 is correlated with the extracellular nonbicarbonate buffering capacity because of the release of H+ ions coming from the back-titration of these buffers. We conclude that sodium bicarbonate may exacerbate cell acidosis under buffering conditions close to those in vivo and that the initial changes in cell pH caused by sodium bicarbonate depend on the extracellular nonbicarbonate buffering capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003246-200105000-00032DOI Listing

Publication Analysis

Top Keywords

sodium bicarbonate
36
nonbicarbonate buffering
28
buffering capacity
24
bicarbonate intracellular
12
extracellular nonbicarbonate
12
bicarbonate
10
nonbicarbonate
9
sodium
9
intracellular
8
intracellular depends
8

Similar Publications

Oral Tributyrin Treatment affects Short-Chain Fatty Acid Transport, Mucosal Health, and Microbiome in a Mouse Model of Inflammatory Diarrhea.

J Nutr Biochem

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:

Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.

View Article and Find Full Text PDF

Surface water chemistry of the River Ganga at Varanasi was analyzed at 10 locations over 3 years (2019-2021) across pre-monsoon, monsoon, and post-monsoon seasons. The study aimed to assess water parameters using principal component analysis (PCA), calculate the water quality index (WQI), determine processes governing water chemistry, evaluate irrigation suitability, and estimate non-carcinogenic health risks. The physical parameters measured included pH (8.

View Article and Find Full Text PDF

Renal Tubular Acidosis: Core Curriculum 2025.

Am J Kidney Dis

January 2025

Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!