Otx genes in the development and evolution of the vertebrate brain.

Int J Dev Neurosci

MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, New Hunt's House, SE1 1UL, London, UK.

Published: July 2001

Most of the gene candidates for the control of developmental programmes that underlie brain morphogenesis in vertebrates are the orthologues of Drosophila genes coding for signalling molecules or transcription factors. Among these, the orthodenticle group, including the Drosophila orthodenticle (otd) and the vertebrate Otx1 and Otx2 genes, is mostly involved in fundamental processes of anterior neural patterning. In mouse, Drosophila and intermediate species otd/Otx genes have shown a remarkable similarity in expression pattern suggesting that they could be part of a conserved control system operating in the brain and different from that coded by the HOX complexes controlling the hindbrain and spinal cord. In order to verify this hypothesis, a series of mouse models have been generated in which the functions of the murine Otx genes were: (i) fully inactivated, (ii) replaced with each other, and (iii) replaced with the Drosophila otd gene. The data obtained highlight a crucial role for the Otx genes in specification, regionalization and terminal differentiation of rostral central nervous system and lead to hypothesize that modification of their regulatory control may have influenced the morphogenesis and evolution of the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0736-5748(01)00003-xDOI Listing

Publication Analysis

Top Keywords

otx genes
12
genes
5
genes development
4
development evolution
4
evolution vertebrate
4
brain
4
vertebrate brain
4
brain gene
4
gene candidates
4
candidates control
4

Similar Publications

Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation.

View Article and Find Full Text PDF

The zinc finger and BTB domain-containing 11 gene (zbtb11) is expressed in the Xenopus anterior neuroectoderm, but the molecular nature of the Zbtb11 protein during embryonic development remains to be elucidated. Here, we show the role of Zbtb11 in anterior patterning of the neuroectoderm and the cooperative action with the transcription factor Otx2. Both overexpression and knockdown of zbtb11 caused similar phenotypes: expanded expression of the posterior gene gbx2 in the neural plate, and later microcephaly with reduced eyes, suggesting that a proper level of zbtb11 expression is necessary for normal patterning of the neuroectoderm, including eye formation.

View Article and Find Full Text PDF

Distinct dynamics of parental 5-hydroxymethylcytosine during human preimplantation development regulate early lineage gene expression.

Nat Cell Biol

September 2024

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.

The conversion of DNA 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET enzymes represents a significant epigenetic modification, yet its role in early human embryos remains largely unknown. Here we showed that the early human embryo inherited a significant amount of 5hmCs from an oocyte, which unexpectedly underwent de novo hydroxymethylation during its growth. Furthermore, the generation of 5hmC in the paternal genome after fertilization roughly followed the maternal pattern, which was linked to DNA methylation dynamics and regions of sustained methylation.

View Article and Find Full Text PDF

A group 3 medulloblastoma stem cell program is maintained by OTX2-mediated alternative splicing.

Nat Cell Biol

August 2024

Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.

OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program.

View Article and Find Full Text PDF

IGF2BP2 Maintains Retinal Pigment Epithelium Homeostasis by Stabilizing PAX6 and OTX2.

Invest Ophthalmol Vis Sci

June 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China.

Purpose: N6-methyladenosine (m6A) methylation is a chemical modification that occurs on RNA molecules, where the hydrogen atom of adenine (A) nucleotides is replaced by a methyl group, forming N6-methyladenosine. This modification is a dynamic and reversible process that plays a crucial role in regulating various biological processes, including RNA stability, transport, translation, and degradation. Currently, there is a lack of research on the role of m6A modifications in maintaining the characteristics of RPE cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!