Objective: Thrombopoietin (TPO) and transforming growth factor-beta(1) (TGF-beta(1)) have been shown to exert opposite effects on proliferation and megakaryocytic differentiation of hematopoietic cells. To determine whether TGF-beta(1) interferes directly with TPO-induced signal transduction in hematopoietic cells, we compared the regulatory effects in the TPO-responsive cell lines Mo-7e and HEL.

Materials And Methods: The cells were stimulated by 100 ng/mL TPO and/or 100 ng/mL TGF-beta1 and analyzed for proliferation (3H thymidine incorporation), viability (trypan blue exclusion), and protein expression and phosphorylation (Western blot).

Results: TPO enhanced the proliferation of Mo-7e cells as determined by 3H-thymidine incorporation, whereas TGF-beta1 suppressed baseline cell growth and antagonized the proliferative effect of TPO. TPO-induced proliferation also was reduced by a specific inhibitor of the mitogen-activated protein kinase (MAPK) pathway (PD098059), which inhibits activation of the MAPK extracellular signal-regulated kinases (ERK) ERK1 and ERK2, and AG490, an inhibitor of Janus kinase-2, which completely blocked TPO-induced proliferation. As demonstrated by Western blotting, TGF-beta1 reduced the TPO-stimulated ERK1/ERK2 and STAT5 phosphorylation in Mo-7e and HEL cells. This effect was completely reversed by preincubation with a tyrosine phosphatase inhibitor (Na3VO4), which suggests that TGF-beta1 activated a phosphatase. Although STAT3 also was activated by TPO, STAT3 activation remained unaltered by TGF-beta1.

Conclusion: Taken together, these data suggest that TGF-beta1 modulates TPO-mediated effects on megakaryocytic proliferation by interfering with TPO-induced signal transduction, particularly by reducing the activities of MAPK ERK1/ERK2 and STAT5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-472x(01)00628-2DOI Listing

Publication Analysis

Top Keywords

signal transduction
12
transforming growth
8
growth factor-beta1
8
hematopoietic cells
8
tpo-induced signal
8
100 ng/ml
8
tpo-induced proliferation
8
erk1/erk2 stat5
8
tgf-beta1
7
cells
6

Similar Publications

Cell-Instructive Biomaterials with Native-Like Biochemical Complexity.

Annu Rev Biomed Eng

January 2025

1Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA; email:

Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases.

View Article and Find Full Text PDF

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.

Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.

View Article and Find Full Text PDF

Melatonin, a molecule with diverse biological functions, is ubiquitously present in living organisms. There is significant interest in understanding melatonin signal transduction pathways in humans, particularly due to its critical role in regulating the sleep-wake cycle. However, a knowledge gap remains in fully elucidating the mechanisms by which melatonin influences circadian regulation.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!