Eukaryotic glycogen debranching enzyme (GDE) possesses two different catalytic activities (oligo-1,4-->1,4-glucantransferase/amylo-1,6-glucosidase) on a single polypeptide chain. To elucidate the structure-function relationship of GDE, the catalytic residues of yeast GDE were determined by site-directed mutagenesis. Asp-535, Glu-564, and Asp-670 on the N-terminal half and Asp-1086 and Asp-1147 on the C-terminal half were chosen by the multiple sequence alignment or the comparison of hydrophobic cluster architectures among related enzymes. The five mutant enzymes, D535N, E564Q, D670N, D1086N, and D1147N were constructed. The mutant enzymes showed the same purification profiles as that of wild-type enzyme on beta-CD-Sepharose-6B affinity chromatography. All the mutant enzymes possessed either transferase activity or glucosidase activity. Three mutants, D535N, E564Q, and D670N, lost transferase activity but retained glucosidase activity. In contrast, D1086N and D1147N lost glucosidase activity but retained transferase activity. Furthermore, the kinetic parameters of each mutant enzyme exhibiting either the glucosidase activity or transferase activity did not vary markedly from the activities exhibited by the wild-type enzyme. These results strongly indicate that the two activities of GDE, transferase and glucosidase, are independent and located at different sites on the polypeptide chain.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M102192200DOI Listing

Publication Analysis

Top Keywords

transferase activity
16
glucosidase activity
16
mutant enzymes
12
catalytic residues
8
glycogen debranching
8
debranching enzyme
8
polypeptide chain
8
d535n e564q
8
e564q d670n
8
d1086n d1147n
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!