Collagenous sequence governs the trimeric assembly of collagen XII.

J Biol Chem

Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS-Université Claude Bernard Lyon I, 7, Passage du Vercors, 69367 Lyon, Cedex 07, France.

Published: July 2001

A minicollagen containing the COL1 and NC1 domains of chicken collagen XII has been produced in insect cells. Significant amounts of trimers contain a triple-helical domain in which the cysteines are not involved in inter- but in intrachain bonds. In reducing conditions, providing that the triple-helix is maintained, disulfide exchange between intra- and interchain bonding is observed, suggesting that the triple-helix forms first and that in favorable redox conditions interchain bonding occurs to stabilize the molecule. This hypothesis is verified by in vitro reassociation studies performed in the presence of reducing agents, demonstrating that the formation of interchain disulfide bonds is not a prerequisite to the trimeric association and triple-helical folding of the collagen XII molecule. Shortening the COL1 domain of minicollagen XII to its five C-terminal GXY triplets results in an absence of trimers. This can be explained by the presence of a collagenous domain that is too short to form a stable triple-helix. In contrast, the presence of five additional C-terminal triplets in COL1 allows the formation of triple-helical disulfide-bonded trimers, suggesting that the presence of a triple-helix is essential for the assembly of collagen XII.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M101633200DOI Listing

Publication Analysis

Top Keywords

collagen xii
16
assembly collagen
8
interchain bonding
8
xii
5
collagenous sequence
4
sequence governs
4
governs trimeric
4
trimeric assembly
4
collagen
4
xii minicollagen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!