Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced in vivo at levels that cannot be dealt with adequately by endogenous antioxidant systems can lead to the damage of lipids, proteins, carbohydrates and nucleic acids. Oxidative modification of these molecules by toxic levels of ROS and RNS represents an extreme event that can lead to deleterious consequences such as loss of function. More recently, however, interest has focused on the formation of these species at sub-toxic levels and their potential to act as biological signal molecules. Subtoxic ROS and RNS production can lead to alterations in cellular and extracellular redox state, and it is such alterations that have been shown to signal changes in cell functions. By the use of a variety of cell types it has been shown that numerous cellular processes including gene expression can be regulated by subtle changes in redox balance Examples of this include the activation of certain nuclear transcription factors, and the determination of cellular fate by apoptosis or necrosis. Cellular redox balance is, under normal circumstances, probably under genetic control and maintained by an array of enzymatic systems that ensure that overall reducing conditions prevail. Thiols, by virtue of their ability to be reversibly oxidised, are recognised as key components involved in the maintenance of redox balance. Additionally, increasing evidence suggests that thiol groups located on various molecules act as redox sensitive switches thereby providing a common trigger for a variety of ROS and RNS mediated signalling events. In this review we discuss a number of cellular processes in which ROS and RNS have been implicated in redox signalling mechanisms. Particular attention has been paid to the importance of thiols and thiol-containing molecules in these processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867013372904 | DOI Listing |
Biomed Pharmacother
December 2024
Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville 41013, Spain. Electronic address:
The uncontrolled overproduction of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) is linked to chronic inflammation, although they are also essential signaling molecules for the immune system against infectious agents. Bioactive compounds hold promise as functional bioactive nutrients, contributing to the immunomodulatory response. This study investigates the potential of chickpea protein hydrolysate to modulate ROS/RNS stress and inflammatory responses in a cellular low-grade chronic inflammatory model.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
Anthracycline doxorubicin (DOX) remains the first-line chemotherapeutic drug for the efficient treatment of breast cancer, but its severe cardiotoxicity limits its long-term application in clinical tumor chemotherapy. Until now, the pathogenesis mechanism of DOX-induced cardiotoxicity (DIC) is still not fully understood. According to current studies, the oxidative stress caused by the imbalance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and mitochondrial dysfunction in myocardial cells are closely related to DIC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
Despite notable advances in anticancer drug development, their manufacture and use pose environmental and health risks due to toxic byproducts, drug residue contamination, and cytotoxicity to normal cells. Therefore, developing cost-effective anticancer treatments with fewer toxic side effects and higher selectivity is essential to the advancement of highly effective anticancer therapies. Plasma-activated water (PAW) offers a green alternative to conventional chemical treatments as it reverts to water within days.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
In this study, we investigated a novel anti-cancer drug design approach by revisiting diclofenac-based carborane-substituted prodrugs. The redesigned compounds combine the robust carborane scaffold with the oxindole framework, resulting in four carborane-derivatized oxindoles and a unique zwitterionic amidine featuring a nido-cluster. We tested the anti-cancer potential of these prodrugs against murine colon adenocarcinoma (MC38), human colorectal carcinoma (HCT116), and human colorectal adenocarcinoma (HT29).
View Article and Find Full Text PDFTwo aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!