We have devised a mapping method for rapid assembly and ordering of bacterial artificial chromosome (BAC) clones on a radiation hybrid (RH) panel, using sequence-tagged sites (STSs) and PCR. The protocol consists of two rounds of two-dimensional screening from a limited number of BACs to correspond each to an STS. In the first round, STSs are assembled in the RH bins and ordered according to PCR signals derived from 384-well microtiter plates (MTPs) in which BAC clones have been arrayed. In the second round, individual BAC clones are isolated from the MTPs to build a contig. We applied this method to a 35-Mb region spanning human chromosome 1p35-p36 and assembled 1366 BACs in 11 contigs, the longest being about 20 Mb. The working draft sequences of the human genome have been integrated into the contigs to validate the accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1006/geno.2001.6511DOI Listing

Publication Analysis

Top Keywords

bac clones
12
35-mb region
8
human chromosome
8
chromosome 1p35-p36
8
bac-based sts-content
4
sts-content map
4
map spanning
4
spanning 35-mb
4
region human
4
1p35-p36 devised
4

Similar Publications

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Equine Herpesvirus Type 1 ORF76 Encoding US9 as a Neurovirulence Factor in the Mouse Infection Model.

Pathogens

October 2024

Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.

Equine herpesvirus type 1 (EHV-1) causes rhinopneumonitis, abortion, and neurological outbreaks (equine herpesvirus myeloencephalopathy, EHM) in horses. EHV-1 also causes lethal encephalitis in small laboratory animals such as mice and hamsters experimentally. EHV-1 ORF76 is a homolog of HSV-1 US9, which is a herpesvirus kinase.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the increasing infections caused by Streptococcus agalactiae, highlighting the importance of understanding its epidemiology and virulence in patients with blood infections.
  • Researchers analyzed 61 S. agalactiae isolates for antibiotic resistance and biofilm formation, finding that 32.7% of isolates showed clindamycin resistance and a significant portion demonstrated strong biofilm-forming abilities.
  • Genetic analysis revealed the isolates belonged to six clonal complexes, with most of them being strong biofilm producers, while some complexes showed no biofilm production at all.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!