When osteoblasts are cultured on surfaces of increasing microroughness, they exhibit decreases in proliferation, increases in differentiation and local factor production, and enhanced response to 1alpha,25(OH)(2)D(3). The cells interact with surfaces through integrins, which signal by the same pathways used by 1alpha,25(OH)(2)D(3), including protein kinase C via phospholipase C and protein kinase A via phospholipase A(2). This provides opportunities for crosstalk that may contribute to the synergistic effects of surface roughness and the vitamin D metabolite. Because these pathways converge at mitogen-activated protein kinase (MAPK), we tested the hypothesis that the extracellular signal-regulated kinase (ERK1/2) subclass of MAPKs mediates the effects of surface roughness and 1alpha,25(OH)(2)D(3). MG63 osteoblast-like osteosarcoma cells were cultured on commercially pure Ti disks with various surface roughnesses: pretreatment (PT; 0.6 microm average roughness [Ra]), coarse grit-blasted and acid-etched (SLA; 4 microm RA), and titanium plasma-sprayed (TPS; 5.2-microm R(a)). At confluence, cells were treated for 24 h with control media or media containing 10(-7) M 1alpha,25(OH)(2)D(3). One-half of the cultures received 1 microm or 10 microm PD98059, a specific inhibitor of the ERK family of MAPKs. PD98059 alone did not affect proliferation, osteocalcin production, or production of transforming growth factor-beta1 or nitric oxide, regardless of the surface roughness. Alkaline phosphatase was reduced by the inhibition of the ERK family kinases on all surfaces to a comparable extent. However, when PD98059 was added to the cultures with 1alpha,25(OH)(2)D(3), the effects of the seco-steroid were blocked, including the synergistic increases seen in MG63 cells cultured on SLA or TPS. These results indicate that ERK1/2 MAPK is required for the maintenance of alkaline phosphatase at control levels and that the effects of 1alpha,25(OH)(2)D(3) are mediated by ERK1/2. However, the effects of surface roughness are not due to the ERK family of MAPKs. This suggests that alternative pathways may be used, including those mediated by other MAPK subclasses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1097-4636(20010905)56:3<417::aid-jbm1111>3.0.co;2-kDOI Listing

Publication Analysis

Top Keywords

surface roughness
20
protein kinase
16
effects surface
12
erk family
12
mitogen-activated protein
8
kinase mapk
8
kinase phospholipase
8
cells cultured
8
family mapks
8
alkaline phosphatase
8

Similar Publications

Skin wrinkles result from a myriad of multifaceted processes involving intrinsic and extrinsic aging. To combat this effect, plant stem cells offer a renewable and eco-friendly source for various industries, including cosmeceuticals. (SM), which contains the bioactive compound Rosmarinic acid (RA) and has been proposed for its anti-wrinkle effect.

View Article and Find Full Text PDF

The chemical mechanical polishing/planarization (CMP) is essential for achieving the desired surface quality and planarity required for subsequent layers and processing steps. However, the aggregation of slurry particles caused by abrasive materials can lead to scratches, defects, increased surface roughness, degradation the quality and durability of the finished surface after milling processes during the CMP process. In this study, ceria slurry was prepared using polymer dispersant with zinc salt of ethylene acrylic acid (EAA) copolymer at different contents of 5, 6, and 7 wt% (denoted as D5, D6, and D7) to minimize particle aggregation commonly observed in CMP slurries.

View Article and Find Full Text PDF

Characterization of Composites from Post-Consumer Polypropylene and Oilseed Pomace Fillers.

Polymers (Basel)

December 2024

Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.

This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood-plastic composites. The composite production method combined extrusion and hot flat pressing.

View Article and Find Full Text PDF

This study reported a one-spot preparation of magnetic composite carbon (MCC@Fe) from microcrystalline cellulose (MC). The pure cellulose was impregnated in iron (III) chloride solution and carbonized at 650 °C. The MCC@Fe composite adsorbent underwent various characterization techniques.

View Article and Find Full Text PDF

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!