Management of hypertension in this country is confounded by continual changes in recommended target blood pressure (BP) goals and a nonhomogeneous patient population who have a variety of demographic and clinical characteristics that influence treatment. This paper focuses on three major elements in managing hypertension: BP and the importance of reducing it to acceptably low levels; concomitant risk factors or cardiovascular and renal target involvement; and drug therapy that may confer prognostic advantages beyond those predicted by BP effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0895-7061(01)01312-7DOI Listing

Publication Analysis

Top Keywords

rationalizing treatment
4
treatment hypertension
4
hypertension management
4
management hypertension
4
hypertension country
4
country confounded
4
confounded continual
4
continual changes
4
changes recommended
4
recommended target
4

Similar Publications

Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions.

Nat Commun

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.

In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.

View Article and Find Full Text PDF

Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.

View Article and Find Full Text PDF

Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.

View Article and Find Full Text PDF

Optimizing mRNA translation efficiency through rational 5'UTR and 3'UTR combinatorial design.

Gene

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China. Electronic address:

Advances in molecular medicine and biotechnology have demonstrated messenger RNA (mRNA)-based therapies to be a promising therapeutic modality for infectious diseases, genetic disorders, and cancers. However, key challenges persist, including low translation efficiency and short half-life of exogenous mRNA. The untranslated regions (UTRs) influence important parameters like mRNA stability and translation efficiency.

View Article and Find Full Text PDF

Exploring mimosamycin as a Janus kinase 2 inhibitor: A combined computational and experimental investigation.

Comput Biol Chem

January 2025

Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both in vitro and in silico approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!