Two-component signal systems regulate a variety of cellular activities. They involve at least two common signalling molecules: a signal-sensing kinase and a response regulator that mediates the output response. Multistep systems also require proteins containing phosphotransfer domains. Here we report that the response regulator ARR2 from Arabidopsis is predominantly expressed in pollen and is localized in the nuclear compartment of the plant cell. Furthermore, ARR2 is transcriptionally active in yeast and binds to the promoters of nuclear genes for several components of mitochondrial respiratory chain complex I (nCI) from Arabidopsis. The nuclear nCI genes are up-regulated in pollen during spermatogenesis. The transcription factor functions of ARR2 are mediated by its C-terminal output domain. Our data identify ARR2 as the first eukaryotic response regulator which functions as a transcription factor at a known promoter sequence. Yeast two-hybrid analysis and in vitro interaction studies suggest that ARR2 very probably forms part of a multistep two-component signalling mechanism that includes HPt proteins like AHP1 or AHP2. These findings point to an as yet unidentified signal transduction system that may regulate aspects of floral and mitochondrial gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004380000400 | DOI Listing |
BMC Psychol
January 2025
Department of kindergarten, Faculty of Education, Taiz University, Taiz, Yemen.
Background: Emotions are a fundamental part of life and play a critical role in shaping individuals' experiences Effectively regulating emotions in socially appropriate ways is essential for navigating life successfully. This study investigated the impact of seven sadness regulation strategies on depression and anxiety and examined the mediating role of ER in the relationship between sadness regulation and depression and anxiety.
Method: A cross-sectional design was employed with 350 participants (144 men, 206 women) aged 18 to 35.
J Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFPatient Saf Surg
January 2025
Department of Neurosurgery, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Patient safety is the foundation of spine surgery, where the intricate nature of spinal procedures and the unique risks involved call for exceptional diligence and comprehensive protocols. In this high-stakes field, developing and implementing rigorous safety protocols is not only vital for minimizing complications but also for achieving the best possible outcomes and strengthening the confidence patients have in their care team. Each patient entrusts their well-being to their surgical team.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!