Effects of polymorphism on the microenvironment of the LDL receptor-binding region of human apoE.

J Lipid Res

Joseph Stokes, Jr. Research Institute, ARC, Suite 302, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.

Published: June 2001

To understand the molecular basis for the differences in receptor-binding activity of the three common human apolipoprotein E (apoE) isoforms, we characterized the microenvironments of their LDL receptor (LDLR)-binding regions (residues 136;-150). When present in dimyristoyl phosphatidylcholine (DMPC) complexes, the 22-kDa amino-terminal fragments (residues 1;-191) of apoE3 and apoE4 bound to the LDLR with approximately 100-fold greater affinity than the 22-kDa fragment of apoE2. The pK(a) values of lysines (K) at positions 143 and 146 in the LDLR-binding region in DMPC-associated 22-kDa apoE fragments were 9.4 and 9.9 in apoE2, 9.5 and 9.2 in apoE3, and 9.9 and 9.4 in apoE4, respectively. The increased pK(a) of K146 in apoE2 relative to apoE3 arises from a reduction in the positive electrostatic potential in its microenvironment. This effect occurs because C158 in apoE2, unlike R158 in apoE3, rearranges the intrahelical salt bridges along the polar face of the amphipathic alpha-helix spanning the LDLR-binding region, reducing the effect of the R150 positive charge on K146 and concomitantly decreasing LDLR-binding affinity. The C112R mutation in apoE4 that differentiates it from apoE3 did not perturb the pK(a) of K146 significantly, but it increased the pK(a) of K143 in apoE4 by 0.4 pH unit. This change did not alter LDLR-binding affinity. Therefore, maintaining the appropriate positive charge at the C-terminal end of the receptor-binding region is particularly critical for effective interaction with acidic residues on the LDLR.

Download full-text PDF

Source

Publication Analysis

Top Keywords

receptor-binding region
8
apoe3 apoe4
8
ldlr-binding region
8
increased pka
8
pka k146
8
positive charge
8
ldlr-binding affinity
8
ldlr-binding
5
apoe3
5
effects polymorphism
4

Similar Publications

Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with .

Biomolecules

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.

Nanobodies have gained attention as potential therapeutic and diagnostic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their ability to bind and neutralize the virus. However, rapid, scalable, and robust production of nanobodies for SARS-CoV-2 remains a crucial challenge. In this study, we developed a visual and high-efficiency biomanufacturing method for nanobodies with by fusing the super-folder green fluorescent protein (sfGFP) to the N-terminus or C-terminus of the nanobody.

View Article and Find Full Text PDF

(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with transcription levels.

View Article and Find Full Text PDF

Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig.

Animals (Basel)

January 2025

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.

In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples.

View Article and Find Full Text PDF

Development of a Recombinant Fusion Vaccine Candidate Against Lethal Neurotoxin Types A and B.

Vaccines (Basel)

January 2025

Division of High-Risk Pathogens, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, KDCA, Cheongju 28159, Republic of Korea.

Background: Botulinum neurotoxins (BoNTs), produced by , are potent protein toxins that can cause botulism, which leads to death or neuroparalysis in humans by targeting the nervous system. BoNTs comprise three functional domains: a light-chain enzymatic domain (LC), a heavy-chain translocation domain (HC), and a heavy-chain receptor-binding domain (HC). The HC domain is critical for binding to neuronal cell membrane receptors and facilitating BoNT internalization via endocytosis.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!