A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation. | LitMetric

In vivo and in vitro apoptosis of human thymocytes are associated with nitrotyrosine formation.

Blood

Laboratoire de Physiologie Thymique, CNRS ESA-8078 (an affiliation of Institut Paris-Sud sur les Cytokines), Hôpital Marie Lannelongue, 133, avenue de la Résistance, Le Plessis Robinson, France.

Published: June 2001

Most thymocytes are deleted by thymic selection. The mechanisms of cell death are far from being clear. Peroxynitrite is a powerful oxidant produced in vivo by the reaction of superoxide (O2*-) with nitric oxide (NO*) and is able to mediate apoptosis. The aim of this study was to analyze whether NO and peroxynitrite could play a role in human thymocyte apoptosis. The results indicate that 3-(4-morpholinyl)-sydnonimine (SIN-1, an O2*- and NO* donor) and chemically synthesized peroxynitrite, but not S-nitroso-N-acetyl-D,L-penicillamine (SNAP, an NO* donor), have a strong apoptotic effect on human thymocytes (annexin V staining and TUNEL reaction). This effect was inhibited by exogenous superoxide dismutase (SOD), which interacts with O2*- and inhibits the formation of peroxynitrite. Because peroxynitrite formation requires NO*, thymic stromal cells were investigated to determine if they produced NO*. Inducible NOS was synthesized in cultured thymic epithelial cells in certain conditions of cytokine stimulation, as shown by messenger RNA levels, protein analysis, and nitrite production in the supernatants. SIN-1-treated thymocytes had high levels of tyrosine nitration, abolished by the addition of exogenous SOD. Tyrosine nitration was also detected in thymus extracts and sections, suggesting the presence of peroxynitrite in situ. In thymus sections, clusters of nitrotyrosine-positive cells were found in the cortex and corticomedullary areas colocalized with cells positive in the TUNEL reaction. These data indicate an association between human thymocyte apoptosis and nitrotyrosine formation. Thus, the results support the notion of a physiologic role for peroxynitrite in human thymocyte apoptosis. (Blood. 2001;97:3521-3530)

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.v97.11.3521DOI Listing

Publication Analysis

Top Keywords

human thymocyte
12
thymocyte apoptosis
12
human thymocytes
8
nitrotyrosine formation
8
no* donor
8
tunel reaction
8
tyrosine nitration
8
peroxynitrite
7
apoptosis
5
human
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!