Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity.

Blood

Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.

Published: June 2001

AI Article Synopsis

  • Researchers developed a new gene-transfer method to induce apoptosis in tumor cells and studied its effect on immune responses.
  • Mice inoculated with a mix of apoptotic and live leukemia cells showed early tumor growth, but stress on apoptotic cells enhanced their ability to trigger a specific immune response.
  • Stressed apoptotic cells presented to dendritic cells resulted in rejection of live leukemia cells, suggesting the immune system can differentiate between stressed and nonstressed apoptotic cells.

Article Abstract

In attempting to develop effective anticancer immunotherapies, the relative ability of apoptotic cells to induce an immune response remains an important but controversial consideration. A novel gene-transfer approach was used by which rapid induction of pure apoptosis can be selectively achieved in a transfected tumor cell population following exposure to a semisynthetic dimerizing ligand, AP20187. Inoculation of BALB/c mice with apoptotic and viable 12B1-D1 leukemia cells, at a 12:1 ratio subcutaneously, led to early tumor growth. Heat stress up-regulated the expression of membrane heat shock proteins (HSP72 and HSP60) on apoptotic 12B1-D1 cells, and stressed apoptotic cells were capable of generating a T-cell-mediated specific antitumor response. Pulsing of stressed apoptotic leukemia cells onto syngeneic dendritic cells resulted largely in rejection of coinjected viable 12B1-D1 cells. Mice rejecting the primary 12B1-D1 inoculum were immune to the same but not to a different leukemia challenge. Our findings indicate that tumor immunogenicity is dependent on whether cells are stressed before apoptosis induction and suggest that the immune system is capable of distinguishing between stressed and nonstressed cells undergoing programmed cell death. (Blood. 2001;97:3505-3512)

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.v97.11.3505DOI Listing

Publication Analysis

Top Keywords

stressed apoptotic
12
cells
10
heat shock
8
shock proteins
8
apoptotic cells
8
viable 12b1-d1
8
leukemia cells
8
12b1-d1 cells
8
cells stressed
8
stressed
5

Similar Publications

Nephrotoxic effect of cypermethrin ameliorated by nanocurcumin through antioxidative mechanism.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia.

Cypermethrin is a pyrethroid showing nephrotoxicity by generating ROS-impaired oxidative stress and changes in inflammatory and apoptotic markers. The harmful consequences are intended to be mitigated by the imbalance between oxidants and antioxidants. The anti-inflammatory and antioxidant possessions of nanocurcumin (NC) with improved bioavailability ameliorate Cyp toxicity in rat kidneys.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Objectives: Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH's precise function and mechanisms in addressing cardiac fibrosis are still not fully understood.

Materials And Methods: In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction.

View Article and Find Full Text PDF

The impact of bisphenol A on gill health: A focus on mitochondrial dysfunction induced disorders of energy metabolism and apoptosis in Meretrix petechialis.

Aquat Toxicol

January 2025

School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China. Electronic address:

Bisphenol A (BPA), a well-known chemical compound used in various daily goods, has been associated with adverse effects on animal metabolic processes. However, the specific impacts of BPA exposure on clam gills remain largely unexplored. To investigate the effects of BPA on energy metabolism and apoptosis in Meretrix petechialis gills, clams were exposed to varying concentrations of BPA (1, 10, and 100 μg/L) for 21 days.

View Article and Find Full Text PDF

Sepsis remains the leading cause of multiple-organ injury due to endotoxemia. Astaxanthin (ASTA), widely used in marine aquaculture, has an extraordinary potential for antioxidant and anti-inflammatory activity. Purinergic receptor (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!