NMR spin trapping: detection of free radical reactions with a new fluorinated DMPO analog.

Free Radic Biol Med

Dorothy M. Davis Heart & Lung Research Institute, Department of Internal Medicine, Pulmonary and Critical Care Medicine, Ohio State University, Columbus, OH, USA.

Published: May 2001

Electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spin trapping were used for detection of free radical reactions utilizing a new fluorinated analog of DMPO, 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO). The parent FDMPO spin trap exhibits a single 19F-NMR resonance at -66.0 ppm. The signal to noise ratio improved 10.4-fold compared to 31P-NMR sensitivity of the phosphorus-containing spin trap, DEPMPO. The spin adducts of FDMPO with .OH, .CH3, and .CH2OH were characterized. Competitive spin trapping of FDMPO with DMPO showed that both have similar rates of addition of .OH and C-centered radicals. The corresponding paramagnetic spin adducts of FDMPO were extremely stable to degradation. In the presence of ascorbate, reaction products from C-centered radicals resulted in the appearance of two additional 19F-NMR signals at -78.6 and -80 ppm for FDMPO/ .CH(3) and at -74.6 and -76.75 ppm for FDMPO/ .CH(2)OH. In each case, these peaks were assigned to the two stereoisomers of their respective, reduced hydroxylamines. The identification of the hydroxylamines for FDMPO/ .CH3 was confirmed by EPR and 19F-NMR spectra of independently synthesized samples. In summary, spin adducts of FDMPO were highly stable for ESR. For NMR spin trapping, FDMPO showed improved signal to noise and similar spin trapping efficiency compared to DEPMPO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0891-5849(01)00505-6DOI Listing

Publication Analysis

Top Keywords

spin trapping
20
nmr spin
12
spin adducts
12
adducts fdmpo
12
spin
10
trapping detection
8
detection free
8
free radical
8
radical reactions
8
spin trap
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!