Molecular cloning of a cDNA for a putative choline co-transporter from Limulus CNS.

Gene

Department of Biological Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN 37209, USA.

Published: May 2001

It is well documented that the sodium dependent, hemicholinium-3 sensitive, high affinity choline co-transporter is rate limiting in the biosynthesis of acetylcholine and is essential to cholinergic transmission. Until recently this transporter had eluded cloning. Okuda et al. (2000. Nature Neurosci. 3, 120-125) recently reported the successful cloning of the choline co-transporter in Caenorhabditis elegans (CHO-1) and rat (CHT1). We report herein the cloning of the choline co-transporter in the horseshoe crab, Limulus polyphemus. Through the use of a series of degenerate primers selected from consensus sequences of CHO-1 and CHT1, we generated two probes that were used to search a Limulus cDNA library produced from central nervous system (CNS) tissue. The full length nucleotide sequence of the Limulus homolog consists of 3368 bp which includes an open reading frame (ORF) that predicts a protein of 579 amino acids and two non-translation regions (NTR), one at the 3' end and the other at the 5' end. The amino acid sequence has 46% identity with rat CHT1 and 50% identity with both CHO-1 in C. elegans and the recently cloned human co-transporter (hCHT; Apparsundaram et al., 2000. Biochem. Biophys. Res. Commun. 276, 862-867; Okuda and Haga, 2000. FEBS Lett. 484, 92-97). Hydropathy plot analysis predicts the Limulus choline co-transporter (LChCoT) to have thirteen transmembrane domains (TMD), with the N-terminus oriented extracellularly and the C-terminus oriented intracellularly. Northern blot analyses using cDNA probes designed from LChCoT cDNA sequences revealed its distribution specifically in central nervous system structures. On the other hand it was not found in non-nervous tissues. The successful cloning of LChCoT, which was shown to be a member of the sodium-dependent glucose transporter family (SLGT), should prove useful in the determination of its physiological regulation, including its intracellular trafficking.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(01)00421-8DOI Listing

Publication Analysis

Top Keywords

choline co-transporter
20
successful cloning
8
cloning choline
8
rat cht1
8
central nervous
8
nervous system
8
co-transporter
6
choline
5
limulus
5
molecular cloning
4

Similar Publications

Maternal Plasma Choline Levels Are Positively Correlated with Maternal and Placental Phospholipid-DHA Content in Females with Obesity Who Receive DHA Supplementation.

J Nutr

December 2024

Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States. Electronic address:

Background: Pregnancies complicated by maternal obesity are characterized by metabolic differences affecting placental nutrient transport and fetal development. Docosahexaenoic acid (DHA) is critical for fetal brain development and is primarily incorporated into phosphatidylcholine (PC). Recent evidence suggests that choline may enhance PC-DHA synthesis; however, data on the impact of maternal plasma choline on placental phospholipid DHA content in females with obesity are limited.

View Article and Find Full Text PDF

Mammalian sodium-coupled high-affinity choline transporter CHT1 uptakes choline in cholinergic neurons for acetylcholine synthesis and plays a critical role in cholinergic neurotransmission. Here, we present the high-resolution cryo-EM structures of human CHT1 in apo, substrate- and ion-bound, hemicholinium-3-inhibited, and ML352-inhibited states. These structures represent three distinct conformational states, elucidating the structural basis of the CHT1-mediated choline uptake mechanism.

View Article and Find Full Text PDF

Background: Acute acalculous cholecystitis (AAC) is a type of cholecystitis with high mortality rate while its pathogenesis remains complex. Choline is one of the essential nutrients and is related to several diseases. This study aimed to explore the causal relationship between choline metabolites and AAC and its potential mechanisms.

View Article and Find Full Text PDF

VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons.

Int J Mol Sci

September 2024

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.

Article Synopsis
  • KCC2 is a cotransporter in neurons that regulates chloride levels, crucial for the function of inhibitory neurotransmitters like GABA and glycine; low KCC2 levels can lead to increased neuronal excitability associated with disorders like epilepsy and neuropathic pain.
  • Axotomy (nerve injury) reduces KCC2 levels in motoneurons, but if the muscle reinnervation occurs, KCC2 levels can recover, suggesting the influence of neurotrophic factors.
  • Administration of VEGF can prevent the KCC2 downregulation after axotomy, while BDNF may decrease KCC2 levels, indicating potential therapeutic avenues for conditions linked to neuronal hyperactivity.
View Article and Find Full Text PDF
Article Synopsis
  • Congenital Myasthenic Syndromes (CMS) are rare genetic disorders that result in muscle weakness due to problems with neuromuscular transmission, particularly caused by issues in acetylcholine synthesis, leading to life-threatening breathing problems.
  • Two male patients diagnosed with CHT1-CMS exhibited symptoms like apnea, weakness, and developmental delays; treatment with pyridostigmine only partially helped their condition.
  • This report highlights the serious impacts of CMS associated with the SLC5A7 gene mutations, particularly with episodes of apnea and potential central nervous system complications, and notes a lack of documented cases in Latin America.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!