The effect of edible seaweeds [nori (Porphyra tenera) and wakame (Undaria pinnatifida)] on the modulation of colonic microbiota was studied in adult male Wistar rats. Each alga was fed to rats as the only source of dietary fiber and compared with cellulose. After 12 days, animals were sacrificed and cecal contents used as inoculum to ferment lactulose, citrus pectin, cellulose, nori, and wakame in vitro. Dietary treatment did not affect food intake or food efficiency, yet alga caused a significant increase in cecal weight. Nori and wakame were poorly fermented by the cellulose inoculum, with intermediate substrate degradation (76 and 57% for nori and wakame, respectively) and low metabolism to short-chain fatty acids (SCFA) (30% fermentability compared with lactulose). Cecal contents from rats fed nori and wakame showed a reduced ability to ferment all of the studied substrates compared with the cellulose inoculum, causing a reduction in SCFA production and dry matter disappearance. Only nori induced a bacterial adaptation that brought about a higher fermentation of this substrate. The different behaviors of the two algae could be due to their distinct chemical compositions. In conclusion, nondigestible components of edible seaweeds modified the metabolic activity of intestinal microflora, leading to a reduction of its fermentative capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf001389c | DOI Listing |
Int J Mol Sci
May 2024
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126 Bari, Italy.
While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-, Dulse-, and Nori- spp.) and microalgae (Spirulina-, and Chlorella-) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS).
View Article and Find Full Text PDFSci Rep
June 2024
Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755-1404, USA.
Seaweed consumption has gained popularity due to its nutritional value and potential health benefits. However, concerns regarding the bioaccumulation of several trace elements highlight the need for comprehensive studies on exposure associated with seaweed consumption. To address this gap in knowledge, we carried out a feeding intervention study of three common edible seaweeds (Nori, Kombu, and Wakame) in 11 volunteers, aiming to elucidate the extent of both beneficial and harmful trace element exposure through seaweed consumption in humans.
View Article and Find Full Text PDFFoods
March 2024
Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
Technology in the meat industry is advancing to create healthier and more sustainable food. Incorporating micro- and macroalgae into meat products presents an exciting possibility for the meat sector to develop functional food, given that they serve as excellent natural sources of nutrients and bioactive compounds. This review aims to systematically outline the impact of incorporating whole algae and their extracts into various meat products, examining their effects on quality, physicochemical and functional properties, sensory characteristics, and potential for enhancing shelf life.
View Article and Find Full Text PDFEcotoxicol Environ Saf
March 2024
Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China. Electronic address:
With the widespread application of carbon dots (CDs) in fluorescence imaging, their toxicity has become a focal point of concern. The potential toxicity of CDs synthesized from different raw materials remains an unresolved issue. Laver and wakame, which are commonly popular sea vegetable foods rich in nutrients, were utilized to investigate whether synthetic CDs derived from these alga sources retain medicinal value.
View Article and Find Full Text PDFFood Sci Nutr
December 2023
Mohn Nutrition Research Laboratory and Center for Nutrition, Department of Clinical Medicine University of Bergen Bergen Norway.
The consumption of seaweed is on the rise in the Western world. Seaweeds may contain substantial amounts of iodine, and some species could serve as a potential dietary iodine source. However, limited data on the iodine content and in vivo bioavailability of iodine from seaweeds exist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!