The formation of the large protein structure known as "gluten" during dough-mixing and bread-making processes is extremely complex. It has been established that a specific subset of the proteins comprising gluten, the glutenin subunits, directly affects dough formation and breadmaking quality. Glutenin subunits have no definitive structural differences that can be directly correlated to their ability to form gluten and affect dough formation or breadmaking quality. Many protein structural studies, as well as mixing and baking studies, have postulated that disulfide bonds are present in the gluten structure and contribute to the process of dough formation through the process of disulfide-sulfhydryl exchange. Evidence presented here indicates that tyrosine bonds form in wheat doughs during the processes of mixing and baking, contributing to the structure of the gluten network. The relative contributions of tyrosine bonds and disulfide--sulfhydryl interchange are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf010113h | DOI Listing |
Food Chem
January 2025
College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning, China.
In the present study, the effects of glucono-δ-lactone (GDL) as an acid reagent during thermal treatment on the quality of alkaline dough and steamed buns were examined. During the heating process, GDL improved the viscoelasticity and fluidity of the alkaline dough and enhanced intermolecular hydrogen bonding. The hardness of steamed buns was reduced by 61.
View Article and Find Full Text PDFMolecules
December 2024
Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland.
There is growing interest in low-temperature food processing. In the baking industry, low-temperature fermentation improves the production of natural aroma compounds, which have a positive impact on the sensory profile of the final product. The aim of this study was to develop a yeast-lactic acid bacteria starter culture that effectively ferments wheat dough at a temperature of 15 °C.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science and Technology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
Echium amoenum (borage) powder (EAP) is consumed traditionally and is known to possess health-promoting effects. In this research, application of Echium amoenum (borage) powder (EAP) at levels of zero, 1 and 2 % w/w was investigated in the production of biscuit as a widely consumed snack and some characteristics of dough and biscuit samples were evaluated. By adding EAP and increasing its level, water absorption values and dough stability increased (p < 0.
View Article and Find Full Text PDFFood Chem X
January 2025
Infection and Epigenetics Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India.
L-asparagine is an essential amino acid for cell growth and common constituent of all the proteins. During high temperature food processing it reacts with reducing sugars and leads to acrylamide production through a complex process known as Maillard reaction. L-asparaginase hydrolyses the amine-group of L-asparagine to produce aspartic acid and ammonia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia.
In barley having adherent hulls, an irreversible connection between the pericarp with both palea and lemma is formed during grain maturation. A mutation in the () gene prevents this connection and leads to the formation of barley with non-adherent hulls. A genetic model of two isogenic lines was used to elucidate the genetic mechanisms of hull adhesion: a doubled haploid line having adherent hulls and its derivative with non-adherent hulls obtained by targeted mutagenesis of the gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!