The aim of the study was to determine the contents of mineral elements (Ca, K, Mg, Na, P, Cu, Fe, Mn, Cd, Pb, and Se), vitamins (B(1), B(2), B(12), C, D, folates, and niacin), and certain phenolic compounds (flavonoids, lignans, and phenolic acids) in the cultivated mushrooms Agaricus bisporus/white, Agaricus bisporus/brown, Lentinus edodes, and Pleurotus ostreatus. Selenium, toxic heavy metals (Cd, Pb), and other mineral elements were analyzed by ETAAS, ICP-MS, and ICP methods, respectively; vitamins were detected by microbiological methods (folates, niacin, and vitamin B(12)) or HPLC methods (other vitamins), and phenolic compounds were analyzed by HPLC (flavonoids) or GC--MS methods (lignans and phenolic acids). Cultivated mushrooms were found to be good sources of vitamin B(2), niacin, and folates, with contents varying in the ranges 1.8--5.1, 31--65, and 0.30--0.64 mg/100 g dry weight (dw), respectively. Compared with vegetables, mushrooms proved to be a good source of many mineral elements, e.g., the contents of K, P, Zn, and Cu varied in the ranges 26.7--47.3 g/kg, 8.7--13.9 g/kg, 47--92 mg/kg, and 5.2--35 mg/kg dw, respectively. A. bisporus/brown contained large amounts of Se (3.2 mg/kg dw) and the levels of Cd were quite high in L. edodes (1.2 mg/kg dw). No flavonoids or lignans were found in the mushrooms analyzed. In addition, the phenolic acid contents were very low.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf001525dDOI Listing

Publication Analysis

Top Keywords

mineral elements
16
phenolic compounds
12
cultivated mushrooms
12
folates niacin
8
flavonoids lignans
8
lignans phenolic
8
phenolic acids
8
acids cultivated
8
methods vitamins
8
phenolic
6

Similar Publications

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Development of HRP-assisted rGO-FET biosensors for high-precision measurement of serological steroid hormones.

Anal Chim Acta

January 2025

Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul, 04620, Republic of Korea. Electronic address:

Background: Sarcopenia, which is associated with many pathways and molecular mechanisms, not only deteriorates the quality of life in old age but is also linked to various diseases. The ratio between cortisol and dehydroepiandrosterone sulfate (DHEAS) was utilized as a candidate method to diagnose sarcopenia. The hormones can fluctuate in concentration throughout the day, so monitoring the ratio between the two hormones is necessary.

View Article and Find Full Text PDF

How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.

View Article and Find Full Text PDF

Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!