Members of the Bcl2 family of proteins are important regulators of programmed cell death pathways with individual members that can suppress (eg Bcl2, Bcl-XL) or promote (eg Bax, Bad) apoptosis. While the mechanism(s) of Bcl2's anti-apoptotic function is not yet clear, introduction of Bcl2 into most eukaryotic cell types will protect the recipient cell from a wide variety of stress applications that lead to cell death. There are, however, physiologic situations in which Bcl2 expression apparently fails to protect cells from apoptosis (eg negative selection of thymocytes). Further, Bcl2 expression in patient tumor samples does not consistently correlate with a worse outcome or resistance to anticancer therapies. For example, patient response and survival following chemotherapy is independent of Bcl2 expression at least for pediatric patients with ALL. These findings indicate that simple expression of Bcl2 may not be enough to functionally protect cells from apoptosis. The finding that Bcl2 is post-translationally modified by phosphorylation suggests another level of regulation of function. Recent studies have shown that agonist-activated phosphorylation of Bcl2 at serine 70 (single site phosphorylation), a site within the flexible loop domain (FLD), is required for Bcl2's full and potent anti-apoptotic function, at least in murine IL-3-dependent myeloid cell lines. Several protein kinases have now been demonstrated to be physiologic Bcl2 kinases indicating the importance of this post-translational modification. Since Bcl2 phosphorylation has been found to be a dynamic process involving both a Bcl2 kinase(s) and phosphatase(s), a mechanism exists to rapidly and reversibly regulate Bcl2's activity and affect cell viability. In addition, multisite Bcl2 phosphorylation induced by anti-mitotic drugs like paclitaxel may inhibit Bcl2 indicating the potential wide range of functional consequences that this post-translational modification may have on function. While post-translational mechanisms other than phosphorylation may also regulate Bcl2's function (eg ubiquitination), this review will focus on the regulatory role for phosphorylation and discuss its potential clinical ramifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.leu.2402090 | DOI Listing |
Cell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFJ Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, 35516, Egypt.
Aim: Although the relief of ureteral obstruction seems to be a radical treatment for obstructive uropathy (OU), progressive kidney damage is the result because of the associated increased apoptosis and fibrosis. Therefore, it is urgent to find a complementary renoprotective therapy against partially obstructed uropathy cascades. Thus, this study investigated the renoprotective effects of both losartan (LOS) and zinc oxide nanoparticles (ZnONPs) in partial unilateral ureteral obstruction (PUUO).
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.
Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.
Medicine (Baltimore)
November 2024
College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Utilizing network pharmacology and molecular docking, we evaluated the possible pharmacological mechanism of Danggui Sini Decoction (DGSND) for treating erectile dysfunction (ED). DGSND's chemical components and targets were found utilizing the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Disease-related genes associated with ED were identified through GeneCards, OMIM, TTD, DrugBank, and DisGeNET databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!