A functional OGG1 homologue from Arabidopsis thaliana.

Mol Genet Genomics

CEA/Cadarache, DSV, DEVM, Laboratoire de Radiobiologie Végétale, Saint Paul-lez-Durance, France.

Published: April 2001

One of the major mutagenic base lesions in DNA caused by exposure to reactive oxygen species is 7,8-dihydro-8-oxoguanine (8-oxoG). Genes coding for DNA repair enzymes that recognise 8-oxoG have been reported in bacteria, yeast, mammals and plants. The prokaryotic and eukaryotic genes are functional homologues but differ in their primary sequence. We have cloned, sequenced, and expressed a new Arabidopsis thaliana cDNA that shows sequence homology to the eukaryotic genes coding for 8-oxoG DNA N-glycosylases (OGG1). The 40.3-kDa enzyme it encodes (AtOGG1) introduces a chain break in a double-stranded oligonucleotide specifically at an 8-oxoG residue. In addition, AtOGG1 can form a Schiff base with 8-oxoG in the presence of NaBH4, suggesting that it is a bifunctional DNA N-glycosylase. Furthermore, expression of AtOGG1 in an Escherichia coli strain that is deficient in the repair of 8-oxoG in DNA suppresses its spontaneous-mutator phenotype. Thus, we have demonstrated that AtOGG1 is not only a structural but also a functional eukaryotic OGG1 homologue.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004380000414DOI Listing

Publication Analysis

Top Keywords

ogg1 homologue
8
arabidopsis thaliana
8
genes coding
8
eukaryotic genes
8
8-oxog dna
8
8-oxog
6
dna
5
functional ogg1
4
homologue arabidopsis
4
thaliana major
4

Similar Publications

Chronic Non-Communicable Diseases (NCDs) have been considered a global health problem, characterized as diseases of multiple factors, which are developed throughout life, and regardless of genetics as a risk factor of important relevance, the increase in mortality attributed to the disease to environmental factors and the lifestyle one leads. Although the reactive species (ROS/RNS) are necessary for several physiological processes, their overproduction is directly related to the pathogenesis and aggravation of NCDs. In contrast, dietary polyphenols have been widely associated with minimizing oxidative stress and inflammation.

View Article and Find Full Text PDF

Dual Inhibitors of 8-Oxoguanine Surveillance by OGG1 and NUDT1.

ACS Chem Biol

December 2019

Department of Chemistry , Stanford University, Stanford , California 94305 , United States.

Oxidative damage in DNA is one of the primary sources of mutations in the cell. The activities of repair enzymes 8-oxoguanine DNA glycosylase (OGG1) and human MutT Homologue 1 (NUDT1 or MTH1), which work together to ameliorate this damage, are closely linked to mutagenesis, genotoxicity, cancer, and inflammation. Here we have undertaken the development of small-molecule dual inhibitors of the two enzymes as tools to test the relationships between these pathways and disease.

View Article and Find Full Text PDF

Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy.

Toxicol Lett

December 2015

Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. Electronic address:

Studies show that arsenite induces oxidative stress and modifies cellular function via phosphorylation of proteins and inhibition of DNA repair enzymes. Autophagy, which has multiple physiological and pathological roles in cellular function, is initiated by oxidative stress and is regulated by the signaling pathways of phosphatidylinositol 3-phosphate kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K) and extracellular signaling-regulated protein kinase 1/2 (ERK1/2) that play important roles in oncogenesis. However, the effects of arsenite-induced oxidative stress on autophagy and on expression of related proteins are not fully understood.

View Article and Find Full Text PDF

The repair of oxidative damage to DNA is essential to avoid mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a main source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme.

View Article and Find Full Text PDF

Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours.

J Mol Endocrinol

June 2012

Clinic of Endocrinology and Nephrology, Department of Internal Medicine, Neurology and Dermatology, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany.

Increased oxidative stress has been linked to thyroid carcinogenesis. In this paper, we investigate whether oxidative DNA damage and DNA repair differ in follicular adenoma (FA) and follicular thyroid carcinoma (FTC). 7,8-Dihydro-8-oxoguanine (8-OxoG) formation was analysed by immunohistochemistry in 46 FAs, 52 FTCs and 18 normal thyroid tissues (NTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!