Transient generation of reactive oxygen or nitrogen (ROS/RNS), detected with dihydrodichlorofluoroscein by fluorescence microscopy, occurs within minutes of exposing cells to ionizing radiation. In the 1-10 Gy dose range, the amount of ROS/RNS produced/cell is constant, but the percentage of producing cells increases with dose (20 to 80%). Reversible depolarization of the mitochondrial membrane potential () and decrease in fluorescence of a mitochondria-entrapped dye, calcein, are observed coincidentally. Radiation-induced ROS/RNS, depolarization, and calcein fluorescence decrease are inhibited by the mitochondrial permeability transition inhibitor, cyclosporin A, but not the structural analogue, cyclosporin H. Radiation-stimulated ROS/RNS is also inhibited by overexpressing the Ca(2+)-binding protein, calbindin 28K, or treating cells with an intracellular Ca(2+) chelator. Radiation-induced ROS/RNS is observed in several cell types with the exception of rho(o) cells deficient in mitochondrial electron transport. rho(o) cells show neither radiation-induced ROS/RNS production nor depolarization. We propose that radiation damage in a few mitochondria is transmitted via a reversible, Ca(2+)-dependent mitochondrial permeability transition to adjacent mitochondria with resulting enhanced ROS/RNS generation. Measurements of radiation-induced mitogen-activated protein kinase activity indicate that this sensing/amplification mechanism is necessary for activation of some cytoplasmic signaling pathways by low doses of radiation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

radiation-induced ros/rns
12
generation reactive
8
mitochondrial permeability
8
permeability transition
8
rhoo cells
8
ros/rns
7
cells
5
ionizing radiation-induced
4
radiation-induced mitochondria-dependent
4
mitochondria-dependent generation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!