Mitochondrial defects, which occur in the brain of late-stage Huntington's disease (HD) patients, have been proposed to underlie the selective neuronal loss in the disease. To shed light on the possible role of mitochondrial energy impairment in the early phases of HD pathophysiology, we carried out Golgi impregnation and quantitative histochemical/biochemical studies in HD full-length cDNA transgenic mice that were symptomatic but had not developed to a stage in which neuronal loss could be documented. Golgi staining showed morphologic abnormalities that included a significant decrease in the number of dendritic spines and a thickening of proximal dendrites in striatal and cortical neurons. In contrast, measurements of mitochondrial electron transport Complexes I-IV did not reveal changes in the striatum and cerebral cortex in these mice. Examination of the neostriatum and cerebral cortex in human presymptomatic and pathological Grade 1 HD cases also showed no change in the activity of mitochondrial Complexes I-IV. These data suggest that dendritic alterations precede irreversible cell loss in HD, and that mitochondrial energy impairment is a consequence, rather than a cause, of early neuropathological changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/exnr.2000.7626 | DOI Listing |
Cell Death Dis
January 2025
Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy.
Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.
View Article and Find Full Text PDFAquat Toxicol
January 2025
School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China. Electronic address:
Bisphenol A (BPA), a well-known chemical compound used in various daily goods, has been associated with adverse effects on animal metabolic processes. However, the specific impacts of BPA exposure on clam gills remain largely unexplored. To investigate the effects of BPA on energy metabolism and apoptosis in Meretrix petechialis gills, clams were exposed to varying concentrations of BPA (1, 10, and 100 μg/L) for 21 days.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China.
Exercise in heart failure with preserved ejection fraction (HFpEF) remains a hot topic, although current treatment strategies have not been shown to improve the long-term prognosis of HFpEF. Previous studies have mostly focused on the roles of endurance training, the mechanisms underlying long-term voluntary exercise have not been elucidated. The purpose of the present analysis was to evaluate alterations in cardiac function in HFpEF mice (HFpEF-Sed) after 6 weeks of voluntary running (HFpEF-Ex), investigate mechanisms, and compare the effects with fluoxetine (HFpEF-FLX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!