The effects of copper ions on the uptake of some essential metals in the biomass and the electrooptical properties of cell suspensions of the nitrogen-fixing soil bacterium Azospirillum brasilense sp. 245 were studied. Copper cations were shown to be effectively taken up by the cell biomass from the culture medium. The addition of copper ions increased the rate of uptake of some other metals present in the culture medium. This was accompanied by changes in the electrooptical characteristics of cell suspension as measured within the orienting electric field frequency range of 10 to 10,000 kHz. The effects observed during short-term incubation of A. brasilense in the presence of copper cations were less significant than during long-term incubation. These results can be used for rapid screening of microbial cultures for enhanced efficiency of sorption and uptake of metals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bacterium azospirillum
8
azospirillum brasilense
8
copper ions
8
copper cations
8
culture medium
8
uptake metals
8
copper
5
[electrooptical properties
4
properties soil
4
soil nitrogen-fixing
4

Similar Publications

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

L. is an aromatic spice, utilized as an original and peculiar flavoring ingredient in a variety of culinary applications and pharmaceuticals. Black seed ( L.

View Article and Find Full Text PDF

A whole genome sequence of a new strain of the nitrogen-fixing bacterium known for its diverse plant growth-promoting bacteria (PGPB), was obtained for the first time. The strain, designated e AT, was isolated during a soil analysis in the Chernevaya taiga of Western Siberia, a unique and fertile forest ecosystem known for its diverse plant growth-promoting bacteria (PGPB). The genome under study is fully assembled into seven circular molecules, none of which are unequivocally plasmids, with a total length of 6.

View Article and Find Full Text PDF

The challenge of increasing food production while maintaining environmental sustainability can be addressed by using biofertilizers such as Azospirillum, which can enhance plant growth and colonize more than 100 plant species. The success of this biotechnology depends on the amount of plant growth-promoting bacteria associated with the plant during crop development. However, monitoring bacterial population dynamics after inoculation requires time-consuming, laborious, and costly procedures.

View Article and Find Full Text PDF

Micro-polluted surface waters (MPSWs) draw increased concern for environmental protection. However, traditional treatment methods such as activated sludge, ozone activated carbon, and membrane filtration suffer from high cost and susceptibility to secondary pollution and are rarely used to address MPSWs. Herein, a new stepped combined constructed wetland planted with without additional inputs was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!