Nuclear factor kappaB (NF-kappaB) transcriptionally activates genes that promote immunity and cell survival. Activation of NF-kappaB is induced by an IkappaB kinase (IKK) complex that phosphorylates and promotes dissociation of IkappaB from NF-kappaB, which then translocates into the nucleus. Activation of phosphatidylinositol (PI) 3-kinase/Akt signaling by tumor necrosis factor (TNF) activates IKK and NF-kappaB. The present study shows that PTEN, a tumor suppressor that inhibits PI 3-kinase function, impairs TNF activation of Akt and the IKK complex in 293 cells. Transient expression of PTEN suppressed IKK activation and TNF-induced NF-kappaB DNA binding and transactivation. Studies were conducted with PC-3 prostate cancer cells that do not express PTEN and DU145 prostate cancer cells that express PTEN. TNF activated Akt in PC-3 cells, but not in DU145 cells, and the ability of TNF to activate NF-kappaB was blocked by pharmacological inhibition of PI 3-kinase activity in PC-3 cells, but not in DU145 cells. Expression of PTEN in PC-3 cells to a level comparable with that endogenously present in DU145 cells inhibited TNF activation of NF-kappaB. The cell type-specific ability of PTEN to negatively regulate the PI 3-kinase/AKT/NF-kappaB pathway may be important to its tumor suppressor activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M102559200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!