The ATPase reaction cycle of yeast DNA topoisomerase II. Slow rates of ATP resynthesis and P(i) release.

J Biol Chem

Department of Biochemistry and the Center for Human Toxicology, University of Utah School of Medicine, Salt Lake City, Utah 84132 and the Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400.

Published: July 2001

DNA topoisomerase II catalyzes the transport of one DNA duplex through a transient break in a second duplex using a complex ATP hydrolysis mechanism. Two key rates in the ATPase mechanism, ATP resynthesis and phosphate release, were investigated using 18O exchange and stopped-flow phosphate release experiments, respectively. The 18O exchange results showed that the rate of ATP resynthesis on the topoisomerase II active site was slow compared with the rate of phosphate release. When topoisomerase II was bound to DNA, phosphate was released slowly, with a lag. Since each of the preceding steps is known to occur rapidly, phosphate release is apparently a rate-determining step. The length of the lag phase was unaffected by etoposide, indicating that inhibiting DNA religation inhibits the ATPase reaction cycle at some step following phosphate release. By combining the 18O exchange and phosphate release results, the rate constant for ATP resynthesis can be calculated as approximately 0.5 s(-1). These data support the mechanism of sequential hydrolysis of two ATP by DNA topoisomerase II.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M102544200DOI Listing

Publication Analysis

Top Keywords

phosphate release
24
atp resynthesis
16
dna topoisomerase
12
18o exchange
12
atpase reaction
8
reaction cycle
8
release
7
phosphate
7
dna
6
atp
6

Similar Publications

Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy.

View Article and Find Full Text PDF

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A and the germination inhibitor chlorpropham.

View Article and Find Full Text PDF

A 15 month-monitoring of biofouling in relationship with hydrological parameters and contaminants in three French harbours of the English Channel.

Environ Res

January 2025

Université de Caen Normandie, Alliance Sorbonne Université, MNHN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Esplanade de la Paix, 14032 Caen, France; MERSEA UR 7482, Université de Caen Normandie, Esplanade de la Paix, 14032 Caen, France.

Three French harbours connected to different water masses of the English Channel were chosen to investigate the hydrological parameters, chemical contaminants, and biofouling characteristics for 15 months. The biofouling development on two kinds of coatings, an anticorrosion coating (Epoxy) and a foul-release coating (FRC), was studied to compare micro- and macro- biofouling in harbour environments. Biofouling was investigated by considering wet biofouling biomass and composition, microalgae concentration, and bacterial abundance.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!