The aim of this study was to evaluate short-term peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a thin-walled biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide filled with modified denatured muscle tissue (MDMT). The evaluation was performed using transmission electron microscopy and morphometric analysis. Evaluation times ranged from 3 to 12 weeks after reconstruction. Already, 3 weeks after reconstruction, myelinated nerve fibers could be observed in the distal nerve stump. Twelve weeks after reconstruction, the number of (non)myelinated nerve fibers had significantly increased in the distal nerve stump. From this study, we can conclude that a thin-walled biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guides filled with MDMT can be successfully applied in the reconstruction of severed nerves in the rat model. Furthermore, we showed fast nerve regeneration across the 15-mm nerve gap and found that the use of MDMT functioned as a mechanical support preventing a collapse of this thin-walled nerve guide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(00)00340-9DOI Listing

Publication Analysis

Top Keywords

nerve
13
nerve regeneration
12
thin-walled biodegradable
12
nerve guide
12
weeks reconstruction
12
guide filled
8
filled modified
8
modified denatured
8
denatured muscle
8
muscle tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!