Copper toxicity to the freshwater algae Selenastrum capricornutum and Chlorella sp. and the marine algae Phaeodactylum tricornutum and Dunaliella tertiolecta was investigated using different parameters measured by flow cytometry: cell division rate inhibition, chlorophyll a fluorescence, cell size (i.e., light-scattering), and enzyme activity. These parameters were assessed regarding their usefulness as alternative endpoints for acute (1-24 h) and chronic (48-72 h) toxicity tests. At copper concentrations of 10 micrograms/L or less, significant inhibition (50%) of the cell division rate was observed after 48- and 72-h exposures for Chlorella sp., S. capricornutum, and P. tricornutum. Bioassays based on increases in algal cell size were also sensitive for Chlorella sp. and P. tricornutum. Copper caused both chlorophyll a fluorescence stimulation (48-h EC50 of 10 +/- 1 micrograms Cu/L for P. tricornutum) and inhibition (48-h EC50 of 14 +/- 6 micrograms Cu/L for S. capricornutum). For acute toxicity over short exposure periods, esterase activity in S. capricornutum using fluorescein diacetate offered a rapid alternative (3-h EC50 of 90 +/- 40 micrograms Cu/L) to growth inhibition tests for monitoring copper toxicity in mine-impacted waters. For all the effect parameters measured, D. tertiolecta was tolerant to copper at concentrations up to its solubility limit in seawater. These results demonstrate that flow cytometry is a useful technique for toxicity testing with microalgae and provide additional information regarding the general mode of action of copper (II) to algal species.
Download full-text PDF |
Source |
---|
Mol Divers
January 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
A series of flavonoid derivatives containing piperazine sulfonate were designed and synthesized. The results of antiviral experiments in vivo showed that some target compounds had good inhibitory effect on tobacco mosaic virus (TMV). The EC values of S15 and S19 curative activity were 174.
View Article and Find Full Text PDFPest Manag Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P. R. China.
Background: Plant diseases cause huge losses in agriculture worldwide every year, but the prolonged use of current commercial fungicides has led to the development of resistance in plant pathogenic fungi. Therefore, there is an urgent need to develop new, efficient, and green fungicides.
Results: Twenty-three nootkatone-based thiazole-hydrazone compounds were designed, synthesized, and characterized by Fourier-transform infrared (FTIR), proton (H) nuclear magnetic resonance (NMR), carbon-13 (C) NMR, and high-resolution mass spectrometry (HRMS).
Br J Anaesth
January 2025
Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Bermaride LLC, Durham, NC, USA. Electronic address:
Background: Patients with obstructive sleep apnoea (OSA) are considered more sensitive to opioids and at increased risk of opioid-induced respiratory depression. Nonetheless, whether OSA treatment (continuous positive airway pressure, CPAP; or bilevel positive airway pressure, BIPAP) modifies this risk remains unknown. Greater opioid sensitivity can arise from altered pharmacokinetics or pharmacodynamics.
View Article and Find Full Text PDFVet Parasitol
January 2025
College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China. Electronic address:
Monogenean parasites are harmful pathogens in aquaculture systems. Current treatment strategies for monogenean infections are unsatisfactory, making the discovery of new drugs urgent. Thymoquinone (TQ), a natural monoterpene isolated from Nigella sativa L.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.
The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!