Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
[structure in text] The pK(a) values and the geometries of secondary and tertiary amines adjacent to boronic acids were determined using potentiometric and (11)B NMR titrations. The studies showed that the secondary ammonium ion has a pK(a) similar to that of the tertiary ammonium species, which leads to the formation of tetrahedral boron centers at pH values above approximately 5.5. Therefore, secondary amines as well as tertiary amines, when placed proximal to boron centers, can be used to create tetrahedral boronic acids at neutral pH for diol complexation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol0156805 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!