Measurement of cadmium(II) and calcium(II) complexation by fulvic acids using 113Cd NMR.

Environ Sci Technol

Department of Chemistry, University of Kansas, Lawrence 66045, USA.

Published: April 2001

Aquatic and terrestrial fulvic acids are environmentally important in pollution transport because they affect the bioavailability and transport of metal ions. The complexation of the metal ions, Cd(II) and Ca(II), with several fulvic acids is examined in this study using 113Cd NMR. Our results indicate that Cd(II) predominately binds to the oxygen containing functional groups of the fulvic acids. A single 113Cd NMR resonance is observed in NMR spectra of Cd(II)-fulvic acid solutions indicating fast exchange between free and complexed cadmium species. An average association equilibrium constant, K(Cd), is determined from NMR spectra measured for the titration of fulvic acid with Cd(II). The K(Cd) values determined for the four fulvic acids studied range between 1.2 and 3.5 x 10(3) M(-1). Competitive binding between Ca(II) and Cd(II) is used to indirectly determine an average association equilibrium constant, K(Ca), for Ca(II) with each fulvic acid. Overall K(Ca) values range from 4.6 to 7.8 x 10(2) M(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1021/es991372eDOI Listing

Publication Analysis

Top Keywords

fulvic acids
20
113cd nmr
12
metal ions
8
caii fulvic
8
nmr spectra
8
average association
8
association equilibrium
8
equilibrium constant
8
fulvic acid
8
fulvic
7

Similar Publications

The release of algal organic matter (AOM) during seasonal algal blooms increases the complexity and heterogeneity of natural organic matter (NOM) in water sources, altering its hydrophilic-hydrophobic balance and posing significant challenges to conventional water treatment processes. This study aims to verify whether the (Granular activated carbon) GAC selected for the adsorption of NOM in sand filtration effluent can adapt to water quality fluctuations caused by AOM release, and identify the criteria influencing GAC adsorption performance. Results indicated that external surface area, mesopore volume, pore size and surface functional groups were key indicators of GAC adsorption performance.

View Article and Find Full Text PDF

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Our recent study demonstrated that fulvic and humic acids are the major contributors to the adsorption of phenoxyalkanoic acid herbicides in soils. At very low pH, the neutral forms of these herbicides are bound directly to fulvic and humic acids, whereas at higher pH, their anionic forms are adsorbed mainly via bridges created by Al species. The number of active sorption sites associated with Al species complexed with fulvic acids is pH-dependent, whereas the number of corresponding sites in humic acids is pH-independent.

View Article and Find Full Text PDF

The development of materials for the remediation of the environment from solid waste represents an effective utilization strategy. This study presents a novel phosphorus-based slow-release soil agent (SLPs) developed through acid activation of phosphorus tailings. SLPs aim to improve soil properties by gradually releasing phosphorus (P), reducing Pb mobility, and preventing heavy metal contamination.

View Article and Find Full Text PDF

As rice is one of the most crucial staple food sources worldwide, enhancing rice yield is paramount for ensuring global food security. Fulvic acid (FA), serving as a plant growth promoter and organic fertilizer, holds significant practical importance in studying its impact on rice root growth for improving rice yield and quality. This study investigated the effects of different concentrations of FA on the growth of rice seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!